7. Definition (<u>Linear transformations</u>):

A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a *linear transformation* if $\exists A \in \mathbb{M}_{m \times n}(\mathbb{R})$ such that $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$, $\forall \mathbf{x} \in \mathbb{R}^n$. eg. The rotation matrix $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ is a linear transformation which rotates a vector in \mathbb{R}^2 by θ .

Ques: Given $T: \mathbb{R}^n \to \mathbb{R}^m$, how do we find A?

Ans:
$$A = \begin{pmatrix} | & | & | \\ T(\mathbf{e_1}) & T(\mathbf{e_2}) & \cdot & \cdot & T(\mathbf{e_n}) \\ | & | & | \end{pmatrix}$$
 where $\mathbf{e_i}$ is the i^{th} standard basis element of \mathbb{R}^n .

A square matrix is invertible if its linear transformation is invertible.

Theorem: A $n \times n$ matrix A is invertible $\iff rref(A) = I_n \equiv rank(A) = n$.

Finding inverse of a matrix: $A \in \mathbb{M}_{n \times n}(\mathbb{R})$. In order to find A^{-1} , form the augmented matrix $\tilde{A} = \begin{pmatrix} A & | & I_n \end{pmatrix}$ and compute $rref(\tilde{A})$.

- If $rref(\tilde{A})$ is of the form $(I_n \mid B)$, then $A^{-1} = B$.
- If $rref(\tilde{A})$ is of another form, then A is <u>not</u> invertible.

$$(AB)^{-1} = B^{-1}A^{-1}$$
.