Chapter 2

Module 2, Lecture 4

2.1 Agenda Items

- Eigenvalues (evs) and Eigenvectors (EVs) of a matrix.
- Meaning of evs and EVs.
- Diagonalizable matrices and similar transformations.
- Analytical (pen-paper) method of finding evs.
- computational method of finding evs of a matrix(power method, etc).

Definition 8 (evs and EVs). Let $A \in \mathbf{M}_{n \times n}(\mathbb{F})$, where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$. A nonzero vector $x \in \mathbb{F}^n$ is an EV of A if $Ax = \lambda x$ for some $\lambda \in \mathbb{F}$. λ is said to be an ev A corresponding to the EV x.

2.2 Meaning of the equation $AX = \lambda x$

2.2.1 Algebraic meaning

 $Ax = \lambda x \ can \ also \ be \ written \ as \ (A - \lambda I)x = 0, \ i.e., \ \ker(A - \lambda I) = EVs \sqcup \{0\}. \ In \ the$ $above \ equation \ we \ use \ that \ \lambda \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}. \ The \ subspace \ \ker(A - \lambda I)$ $has \ a \ special \ name, \ EIGENSPACE \ of \ \lambda \ w.r.t. \ A.$

Consider an example: $A = \begin{pmatrix} 2 & -1 \\ 2 & 4 \end{pmatrix}$ so that $A - \lambda I = \begin{pmatrix} 2 - \lambda & -1 \\ 2 & 4 - \lambda \end{pmatrix}$. Now solving $Ax = \lambda x$ is equivalent to solving the system of linear equations $\begin{pmatrix} 2 - \lambda & -1 \\ 2 & 4 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. This implies that

$$(2 - \lambda)x_1 - x_2 = 0$$
$$2x_1 + (4 - \lambda)x_2 = 0$$

Since EV cannot be 0, finding Evs of A boils down to the following question:

When does this system of linear equations have a nontrivial solution?

To answer the above question we need to know various features of an invertible matrices:

Let $B \in \mathbf{M}_{n \times n}(\mathbb{F})$, where $F = \mathbb{R}$ or \mathbb{C} . TFAE

- \bullet B is invertible.
- Bx = b has a unique solution in \mathbb{F}^n for all $b \in \mathbb{F}^n$.
- $\operatorname{rref}(B) = I_n$.
- $\operatorname{rank}(B) = n$.
- $\operatorname{im}(B) = \mathbb{F}^n$.
- $\ker(B) = \{0\}.$

Let us try to answer the above question now. In view of the above equivalence

$$\ker(A - \lambda I) \neq \{0\} \iff (A - \lambda I) \text{ is not invertible}$$

$$\iff \det(A - \lambda I) = 0.$$

In our problem

$$\det(A - \lambda I) = \det\begin{pmatrix} 2 - \lambda & -1 \\ 2 & 4 - \lambda \end{pmatrix} = (2 - \lambda)(4 - \lambda) + 2 = \lambda^2 - 6\lambda + 10$$

The above polynomial in λ is called the *characteristic polynomial for the matrix A*. Thus

$$\det(A - \lambda I) = 0 \iff \lambda = 3 \pm i$$

Let us call $\lambda_1 = 3 + i$ and $\lambda_2 = 3 - i$.

To find EV w.r.t. λ_1 solve $Ax = \lambda_1 x$. After solving we obtain $(1+i)x_1 + x_2 = 0$, i.e., $x_2 = -(1+i)x_1$. We can take x_1 to be any nonzero scalar of \mathbb{F} , say k, so as to write $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} k \\ -(1+i)k \end{pmatrix} = k \begin{pmatrix} 1 \\ -1-i \end{pmatrix}$. Hence any nonzero multiple of the vector $\begin{pmatrix} 1 \\ -1-i \end{pmatrix}$ is an EV of the matrix A w.r.t the ev λ_1 . Similarly one can find EV corresponding to the ev λ_2 .

2.3 A Slight Digression

Let $B \in \mathbf{M}_{n \times n}(\mathbb{F})$, where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$.

Question: Why $null(B) = \{0\} \iff B \text{ is invertible }?$

Answer: For finite dimensional vector spaces U, V over \mathbb{F} , a linear transformation $T: U \to V$ is invertible if and only if T is one to one and onto. Rank Nullity Theorem:

$$nullity(T) + \mathbf{rank}(T) = \dim(U).$$

Since T is one to one $\ker(T) = \{0\}$, i.e., $\operatorname{nullity}(T) = 0$. Also since T is onto, $\operatorname{rank}(T) = \dim(V)$. Therefore by Rank nullity theorem we obtain

$$T \text{ is an isomorphism } \Longrightarrow \dim(U) = \dim(V).$$

2.4 HW/Exercise problem

Q. Consider
$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$

1. Find the characteristic polynomial for A.

- 2. Find the evs of A.
- 3. Find the EVs of A

Ans:

$$evs: -1, 2, 3.$$

$$EVs: \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0 \end{pmatrix}.$$

Geometrical meaning of $Ax = \lambda x$, when λ is real. Ax is parallel to x, i.e., the "EV" x either gets stretched longitudinally when acted upon by the matrix A.

2.5 Coming Soon!

- Diagonalizable matrix
- Similarity transformation
- ullet Application of evs and EVs in solution to ODE

Chapter 3

Module 2, Lecture 5

3.1 Agenda Item

- Diagonalization of matrices
- Similarity transformation
- $\bullet \ \ Spectral \ decomposition \ of \ matrices$

Last Lecture:

- We define evs and EVs of a square matrix
- determinant and trace of a matrix and its relation with evs

3.2 Diagonalizable Matrices

Certain forms of matrices are convenient to work with. For example

- Upper/Lower triangular matrices(why?)
- Diagonal forms(why?)

Think finding evs and powers of above matrices.

Wouldn't it be nice if

$$A \longrightarrow D$$
(any $n \times n \ matrix$) (diagonal form)

 $A \in \mathbf{M}_{n \times n}(\mathbb{F})$ is diagonalizable over \mathbb{F} if there exists an invertible matrix S over \mathbb{F} such that $A = SDS^{-1}$, or equivalently $D = S^{-1}AS$.

Note that the evs of A and D will be the same and the above relation $D = S^{-1}AS$ is known as the similarity transformation.

Q. When is a matrix diagonalizable?

Ans: $A \in \mathbf{M}_{n \times n}(\mathbb{F})$ is diagonalizable if and only if A has n linearly independent EVs in \mathbb{F}^n .

Note that an $n \times n$ complex matrix that has n distinct eigenvalues is diagonalizable.

Example 9. Q. Find a matrix that diagonalizes $A = \begin{pmatrix} 2 & -1 \\ 2 & 4 \end{pmatrix}$.

Ans: Solve $det(A - \lambda I) = 0$ to obtain $\lambda_1 = 3 + i$ and $\lambda_2 = 3 - i$. Solving $Ax = \lambda_i x$ for i = 1, 2, we obtain

$$X_1 = \begin{pmatrix} 1 \\ -1 - i \end{pmatrix}, X_2 = \begin{pmatrix} 1 \\ -1 + i \end{pmatrix}$$

as Evs of A w.r.t. the evs λ_1, λ_2 , respectively. We note that $S = \begin{pmatrix} 1 & 1 \\ -1 - i & -1 + i \end{pmatrix}$ diagonalizes A. Since

$$S^{-1}AS = \begin{pmatrix} \frac{-1+i}{2i} & -\frac{1}{2i} \\ \frac{1+i}{2i} & \frac{1}{2i} \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1-i & -1+i \end{pmatrix}$$
$$= \begin{pmatrix} 3+i & 0 \\ 0 & 3-i \end{pmatrix}$$
$$= \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$
$$= D$$

The Column vectors of S form an eigenbasis for A and the diagonal entries of D are the associated evs.

Q. What are the evs and EVs of the $n \times n$ identity matrix I_n ?

Is there an eigenbasis for I_n ?

Which matrix diagonalizes I_n ?

This is in some sense a silly and yet a conceptually trick question.

Example 10. Find the eigenspace of
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

The evs are given by 0 and 1 with algebraic multiplicity 1 and 2, respectively. To find EV consider

$$X_{1} = \ker(A - 1I)$$

$$= \ker\begin{pmatrix} 0 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \ker\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \operatorname{sp}\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

where $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ is the reduced row echelon form of the matrix $\begin{pmatrix} 0 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. The calculation:

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\implies \begin{pmatrix} x_2 \\ x_3 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Above calculation shows that $x_2 = x_3 = 0$. Thus we can take any nonzero value as x_1 to obtain an EV of A w.r.t. the ev 1. For convenience we take $x_1 = 1$ to obtain $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ as an EV. Likewise $X_2 = \ker A = \operatorname{sp} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$. Thus we are able to find only two linearly independent EVs. Hence we won't have an eigenbasis here, equivalently we cannot find S to diagonalize A.

3.3 Geometric multiplicity of ev

$$gemm(\lambda) = \dim(\ker(A - \lambda I_n))$$

= $nullity(A - \lambda I_n)$
= $n - \operatorname{rank}(A - \lambda I_n)$

In previous example

$$gemm(1) = \dim(\ker(A - \lambda I_n)) = \dim\begin{pmatrix} 1\\0\\0 \end{pmatrix} = 1 \neq almu(1) = 2.$$

Theorem 11. A matrix A is orthogonally diagonalizable $(D = Q^{-1}AQ \equiv Q^tAQ)$ iff A is symmetric $(A = A^t)$.

3.4 Spectral decomposition

Let A be a real symmetric $n \times n$ matrix with evs $\lambda_1, \lambda_2, \dots, \lambda_n$ and corresponding orthonormal EVs v_1, v_2, \dots, v_n ; then

$$A = \begin{pmatrix} \vdots & \vdots & \vdots \\ v_1 & v_2 & v_3 \\ \vdots & \vdots & \vdots \end{pmatrix} \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \begin{pmatrix} \dots & v_1 & \dots \\ \dots & v_2 & \dots \\ & \vdots & \\ \dots & v_n & \dots \end{pmatrix}$$
$$= QDQ^t.$$

This concludes the life and theory of a matrix in FM112.