Chapter 2

Module 2, Lecture 4

2.1 Agenda Items

Figenvalues (evs) and Eigenvectors (EVs) of a matriz.

Meaning of evs and EVs.

Diagonalizable matrices and similar transformations.

Analytical (pen-paper) method of finding evs.

computational method of finding evs of a matriz(power method, etc).

Definition 8 (evs and EVs). Let A € M, (F), where F = R or F = C. A nonzero
vector x € F" is an EV of A if Az = Az for some A € F. ) is said to be an ev A
corresponding to the EV .

2.2 Meaning of the equation AX = \x

2.2.1 Algebraic meaning

Az = Az can also be written as (A— N )x =0, i.e., ker(A—\I) = EVsU{0}. In the
T A0 O 1

above equation we use that X\ | zo | =10 X 0 xy | . The subspace ker(A— )
T3 0 0 A xs3

has a special name, EIGENSPACE of A w.r.t. A.
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2 —1 -1
Consider an example: A = so that A — A\ = . Now
2 4 4— N\

2= —1) (=
solving Ax = Ax is equivalent to solving the system of linear equations < 2 4 )\) ( l>

0
<0>. This implies that
(2—)\>$1—£L’2:O
21‘1 + (4 — )\)(L’Q =0
Since EV cannot be 0, finding Evs of A boils down to the following question:

When does this system of linear equations have a nontrivial solution?

To answer the above question we need to know various features of an invertible

matrices:

Let B € M,,»,(F), where F' =R or C. TFAE

e B is invertible.
e Bz = b has a unique solution in F" for all b € F".

o rref(B) = I,,.

e rank(B) = n.
e im(B) =F".
e ker(B) = {0}.

Let us try to answer the above question now. In view of the above equivalence

ker(A — \I) # {0} <= (A — AI) is not invertible
<= det(A—\) =0.

In our problem

-1

2—-A
det(A — M) = det
2 4=

>_(2—)\)(4—>\)+2_)\2—6>\+10



The above polynomial in A is called the characteristic polynomial for the matriz A.
Thus
det(A—A)=0 <= A=3+1

Let us call \y =3+ 1 and Ay = 3 — 1.

To find EV w.r.t. Ay solve Ax = \x. After solving we obtain (1+1i)x;+xe =0,

i.e., o = —(1 +i)zy. We can take x1 to be any nonzero scalar of F, say k, so as
x k 1
to write || = =k . Hence any nonzero multiple of the
vector . is an EV of the matriz A w.r.t the ev A\1. Similarly one can find
—1—1

EV corresponding to the ev Ay.

2.3 A Slight Digression

Let B € M,,»,(F), where F =R orF = C.
Question: Why null(B) = {0} <= B is invertible ?

Answer: For finite dimensional vector spaces U,V over F, a linear transforma-
tion T : U — V 1is invertible if and only if T is one to one and onto.
Rank Nullity Theorem:

nullity(T) + rank(7) = dim(U).

Since T is one to one ker(T) = {0}, i.e., nullity(T) = 0. Also since T is onto,
rank(7T') = dim (V). Therefore by Rank nullity theorem we obtain

T is an isomorphism = dim(U) = dim(V).

2.4 HW /Exercise problem

2 -1 -1
Q. Consider A= -1 2 -1
-1 -1 0

1. Find the characteristic polynomial for A.

10



2. Find the evs of A.

3. Find the EVs of A

Ans:
evs: — 1,2, 3.
1 1 1
EVs: 11, 1 , | —1
2 -1 0

Geometrical meaning of Ax = Ax, when X is real. Ax is parallel to x, i.e., the
“BEV” x either gets stretched longitudinally when acted upon by the matriz A.

2.5 Coming Soon!

e Diagonalizable matrix
o Similarity transformation

o Application of evs and EVs in solution to ODE
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Chapter 3

Module 2, Lecture 5

3.1 Agenda Item

e Diagonalization of matrices
e Similarity transformation

e Spectral decomposition of matrices

Last Lecture:

o We define evs and EVs of a square matrix

e determinant and trace of a matriz and its relation with evs

3.2 Diagonalizable Matrices

Certain forms of matrices are convenient to work with. For example

e Upper/Lower triangular matrices(why?)

e Diagonal forms(why?)

Think finding evs and powers of above matrices.
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Wouldn’t it be nice if

A—D

(any n x n matriz) (diagonal form)

A € M,,»,(F) is diagonalizable over F if there exists an invertible matriz S over
F such that A = SDS™!, or equivalently D = S~ AS.

Note that the evs of A and D will be the same and the above relation D = ST*AS

18 known as the similarity transformation.
Q. When is a matriz diagonalizable?

Ans: A € M, xn(F) is diagonalizable if and only if A has n linearly independent
EVs in F™.

Note that an n X n complex matriz that has n distinct eigenvalues is diagonaliz-

able.

2 —1
Example 9. Q. Find a matrix that diagonalizes A = <2 A )

Ans: Solve det(A — AI) = 0 to obtain A\; = 3+ ¢ and Ay = 3 —i. Solving

Ax = \x for i = 1,2, we obtain

1 1
Xlz 7X2:
—1—1 -1+

1 1
as Evs of A w.r.t. the evs A1, Ay, respectively. We note that S = ( P )
—1l—2 =142

diagonalizes A. Since
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The Column vectors of S form an eigenbasis for A and the diagonal entries of

D are the associated evs.
Q. What are the evs and EVs of the n x n identity matriz I, ?
Is there an eigenbasis for I, ¢
Which matriz diagonalizes I,,?

This is in some sense a silly and yet a conceptually trick question.

1 11
Example 10. Find the eigenspace of A= |0 0 1
0 0 1

The evs are given by 0 and 1 with algebraic multiplicity 1 and 2, respectively.
To find EV consider

X; = ker(A —11)

0 1 1
=ker |0 -1 1
0O 0 0
010
=ker |0 0 1
000
1
= Sp )
0
010 0 1 1
where | 0 0 1| is the reduced row echelon form of the matrix | 0 —1 1 |. The
0 00 0O 0 0
calculation:
010 T 0
0 0 1 zo | = |0
000 T3 0
) 0
— T3 = O
0 0
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Above calculation shows that zo = 3 = 0. Thus we can take any nonzero value as

21 to obtain an EV of A w.r.t. the ev 1. For convenience we take x; = 1 to obtain

1 —1
0| as an EV. Likewise Xy = ker A =sp | 1 |. Thus we are able to find only
0 0

two linearly independent EVs. Hence we won’t have an eigenbasis here, equivalently

we cannot find S to diagonalize A.

3.3 Geometric multiplicity of ev

gemm(\) = dim(ker(A — \I,,))
= nullity(A — \1,,)
=n —rank(A — \1[,,)

In previous example

gemm(1) = dim(ker(A — A\1,,)) = dim( ) =1 almu(l) = 2.

o O =

Theorem 11. A matriz A is orthogonally diagonalizable (D = Q™ 'AQ = Q'AQ)
iff A is symmetric (A = A").

3.4 Spectral decomposition

Let A be a real symmetric n X n matriz with evs A, X, ..., \, and corresponding
orthonormal EVs vi,vs...,v,; then
U1
Al 0
V2
A= V1 VU2 Vs Tl
0 A,
Uy,
=QDQ".

This concludes the life and theory of a matrix in FM112.
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