Solutions to Systems of Linear Differential Equations (DE)

An n-dimensional linear first-order DE system is one that can be written as a
matrix vector equation -

X'(t) = A@)X (t) + f ()

A(t)isan n X n matrix
X(®)and f(t)are n x 1 vectors

If f(t) = 0, the system is homogenous, i.e.  X'(t) = A(t) X (t)

(3 -2 0) (X))

Example: X' '=3X—2V . . .
V' = X —y X'=[1 0 0|X X=|y
-1 1 3 \Z,

2'=—X+Yy+3z

A



2e? X'=3x-2y

It may be easily verified that X =| e* | is asolution to the system Yy’ =X
e” 2'=—X+Yy+3z
0 e
Actually, it can be easily verified that| 0 |and | €' | are also solutions to the same Xﬁ = A)Zh
e 0 ; o
linear combinations
Similarly, for the non- of these will also be
homogenous ODE solutions
X' =3X—-2y+2—2¢' 3 =20 2-2¢ 3
X'=l1 0 0|X+| —¢ X =|1
y = x—¢' — t -
-1 1 3 e -1 0

Z'=—X+y+3z+e' -1

Particular solution
of the system
CHECK!



The Superposition Principle for Homogenous Linear DE Systems

If X (1), X (1), ennen. X,(t) are linearly independent solutions to the homogenous equation X'(t) = A(t) X (t)
then any linear combinations of these, i.e.

CR () + C, X () + v 4G %, (1)

is also a solution to that equation for any set of real constants ¢4, ¢5,........ , Cn

Using this Superposition Principle and the homogenous and particular solutions obtained earlier -
(0 ) (2e2!) (et} (et

X(t) =%, () +X,(t)=c,| 0 |+c,| e |+c |e' |+| 1

3t 2t
&) e ) \0) {0
\ ) | )
| |
Linear combination of the three particular
independent solutions of the solution

homogenous equation




0 2e”
We need to show that % =| 0 |, %, =| &*

e3t e2t

independent on (—o0, )

Step 1: Choose a point, say ty = 0 € (—o0, )

are linearly

Step 2: Calculate X (t,), X, (t;), X,(t;) and form the column space matrix

(0 2 1
C=/0 1 1

11 0,

The columns of C are obviously
independent but we will confirm
that in the next slide by computing

rref (c)



Step 3: Test for linear independence of the columns of C by computing

1 0 O
rref(C)={0 1 O
0 0 1

Clearly, the column vectors of C must be linearly independent

Alternatively, this could have been shown by calculating and showing that det(C) # 0

In general, for a n X n linear system, we need n linearly independent solutions X, (t), X, (t),.......... X _(t)
to form a basis for the solution space with the general solution to the homogenous system given by

X, =, X, (1) +C, X, (t) + ... +C. X (1) CLCpemernnnn c.cR




Fundamental Matrix:

Note that )Th) can also be expressed as follows -

)_(h (t) =G

(0 )
0

3t

S,

+C,

/ZeZt \

eZt

+C,

2t
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(et

et
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(0 2e* e')(c,)
0 e e€'|c,
3t 2t

e” e 0 )¢ )
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Y Y
X(t) C
Fundamental
Matrix



Fundamental Matrix X(t) (continued)

One can also show that

(1) det(X(t)) #0 X'(t) = AX(¢)

(i) The Fundamental Matrix is NOT unique
A different set of linearly independent solutions

will produce a different X (t) but that x;, = X(t)¢
would hold

How do we find X}, and X, for a System of Linear ODEs?




Consider the Homogenous Solution x, first, i.e. the solution of X' = AX

If we choose solutions of the form X = et D,

then substituting in X'(t) = AX(t)

gives Let D = Aetty

Factoring this, we get eM(A—ADB =0

Since et can never be zero, we need to find A and ¥ such that (A — AI)¥ = 0

But a scalar A and a non-zero vector ¥ satisfying (4 — AI)% = 0
are the eigenvalue and eigenvector of the matrix A




Considering the eigenvalues of A, we will have three main cases —
(i) Distinct Real Eigenvalues

(ii)) Repeated Real Eigenvalues

(iii) Complex Eigenvalues

for the eigenvalues of A in X'(t) = AX(t)



Case (i): X'(t) = AX(t) has real eigenvalues A4, 4,,........ An  Aj#F Ajfori#j
and the corresponding eigenvectors are vy, Uy, ........, Uy,

Note that the eigenvalues are not repeated and, therefore, n independent
eigenvectors can be found

For this case, the General Homogenous Solution is of the form —

X(t) =cC,e"V, +C,e7V, ... +c eV

Note that in the case of repeated eigen values, i.e. 4; = 4; i # j, we will need
either independent eigenvectors or generalized eigenvectors, as discussed later




Example  consider the following system of ODEs with initial conditions x(0) = 3, y(0) = 1

X=—2x+y

d
, = ¥=(7 )% fo=()
d_y =X—-2Y

For this, eigenvalues are 1; = —1, 1, = —3 and eigenvectors v; = (1), U, = (_D

General Solution: X(t) = ce™t (D +c,e3t (_D

Using the given initial condition X (0) = G) = 4 (i) + ¢, (_1) = c=2,c,=1

x(t) =2et (1) + g3t (_1)




—t —3t —t —3t
Alternatively, x(t) = X(t)¢ = (e ° )(2) - (Ze e )

e—t _e—3t 1 Ze—t_ e—3t

Solution

f Y A Soarl * Trajectories move towards or away from

the equilibrium according to the sign of
. [ | } the eigenvalues (-ive or +ive) associated
V= l

with the eigenvectors

* Along each eigenvector is a unique
trajectory called a SEPRATRIX that
separates the trajectories curving one
way from those curving the other way

* The equilibrium occurs at the origin and
the phase portrait is symmetric about
this point

Phase Portrait
(Stable Equilibrium at origin, solution from (3,1) in grey)



Case (ii): X'(t) = AX(t) with repeated eigenvalues 14,4, = A

R Consideronly 2 x 2
and with only one eigenvector v

case for simplicity

Construct an additional linear independent vector u as follows
Step (i): Find ¥ corresponding to A
Step (i) Find a new 2 # 0 such that (4 — A% = ¥
Step (i) With these, try X(t) = c;e v + c e (t¥ + 1)
u is referred to as the Generalized Eigenvector

of A
But it is not really an eigenvectoras Au # A u



Why this approach works?

Let X, (t) = e’ (tD + i) where we are given that

(a) eigenvalue 1 and eigenvector ¥ satisfy (4 — AI)% = 0
and (b) X;(¢) = e*# is a solution of X' = AX ,i.e. X! = AX,

Show that X, = AX, if we can find % such that (4 — ADu = ¥

Substituting, et (¥ + AtIv + A1) = e (tAD + AL) and equating the coefficients of tef and e?t on
the LHS and RHS of this equation, we get —

1. Coefficient of te’t: (A=A v = 0 Thisis the original eigenvalue equation that we already had

2. Coefficientofett: (A—ADU =7  We need to solve this to find % and use it to find
X,(t) = eM(tB + W)



Eigenvalue 1 = 4 (repeated)
. . VI AV 2 —1\g . 15— 1
Example: Consider X' = AX = (4 6) X ] |Eigenvector ”‘(_2) :
. > — L4t
One solution ¥, (t) = e (_2)

If we follow the earlier approach of Lecture 1 of
Module 3 then we should try our second solution as
X,(t) = te*'v. However, substituting this X,(t) in

X' = A)?, we find that this does not work!

See Example 6, pg. 363
of Farlow textbook




Eigenvalue A = 4 (repeated)
. . S, (1
2 1) - Eigenvector v—(_z)

Example: Consider X' = AX = (4 p X

One solution X (t) = e*t (_12)

—

Instead, we try a Generalized Eigenvector 1 such that X,(t) = e*t(t¥ + %) is a solution to X5 = AX,

This can be simplifiedto (1) (A—4D% =0 and (2)(A—40)W =13 byequating the coefficients
of e*t and te*! on both sides of ¥, = AX,

Here (1) is the original eigenvalue equation for A = 4 and 13=(_é) and will not give us anything new

For(2), (A—4Di =5 = (_i _3) C:) = (_12) > 2u; U, = —1

Choosing u; = K (say) =u; =—-2K-1 or u= CLL;) =K (_;) T (_2)

Therefore, 7, (t) = te* ( _12) + Kett _12) 4ot _01) = | #,(t) = te*t (_12) et _01)

We drop the middle term as that is just a multiple of our first solution



The two solutions are then -
% (1) = e (—12)

and  X,(t) = et (—Ztt— 1)

Final Solution

The generalized eigenvector u
includes a variable t and so
cannot be drawn as a second
stable vector on the phase
portrait

x(t) = cie*t (_12)

+

At t
—2t—1 Phase Portrait with

(a) Unstable Equilibrium at the origin
(b) Double Eigenvalueat A; = 4, =4
(c) A single eigenvector



Subsequent Lectures:

(i) Complex Eigenvalues

(ii) Particular solutions )_fp for systems of linear ODEs

(iii) Phase Portraits and Stability Analysis



