Solutions to Systems of Linear Differential Equations (DE)

An *n*-dimensional **linear first-order DE system** is one that can be written as a

matrix vector equation -

$$\vec{X}'(t) = A(t)\vec{X}(t) + \vec{f}(t)$$

 $\vec{X}'(t) = A(t)\vec{X}(t) + \vec{f}(t)$ A(t) is an $n \times n$ matrix $\vec{X}(t)$ and $\vec{f}(t)$ are $n \times 1$ vectors

If $\vec{f}(t) \equiv \vec{0}$, the system is **homogenous**, i.e. $\vec{X}'(t) = A(t)\vec{X}(t)$

$$\vec{X}'(t) = A(t)\vec{X}(t)$$

Example:
$$x' = 3x - 2y$$

$$y' = x$$

$$z' = -x + y + 3z$$

Example:
$$x' = 3x - 2y$$

$$y' = x$$

$$z' = -x + y + 3z$$

$$\overrightarrow{X'} = \begin{bmatrix} 3 & -2 & 0 \\ 1 & 0 & 0 \\ -1 & 1 & 3 \end{bmatrix} \overrightarrow{X}$$

$$\overrightarrow{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

It may be easily verified that
$$\vec{x}_h = \begin{pmatrix} 2e^{2t} \\ e^{2t} \\ e^{2t} \end{pmatrix}$$
 is a solution to the system $\begin{aligned} x' &= 3x - 2y \\ y' &= x \\ z' &= -x + y + 3z \end{aligned}$

Actually, it can be easily verified that $\begin{pmatrix} 0 \\ 0 \\ e^t \end{pmatrix}$ and $\begin{pmatrix} e^t \\ e^t \\ 0 \end{pmatrix}$ are also solutions to the same $\vec{X}_h' = A\vec{X}_h$

Similarly, for the **non**homogenous ODE

$$x' = 3x - 2y + 2 - 2e^{t}
 y' = x - e^{t}
 z' = -x + y + 3z + e^{t} - 1$$

$$\overrightarrow{X}' = \begin{bmatrix} 3 & -2 & 0 \\ 1 & 0 & 0 \\ -1 & 1 & 3 \end{bmatrix} \overrightarrow{X} + \begin{bmatrix} 2 - 2e^{t} \\ -e^{t} \\ e^{t} - 1 \end{bmatrix}$$

$$\overrightarrow{X}_{P} = \begin{bmatrix} e^{t} \\ 1 \\ 0 \end{bmatrix}$$

linear combinations of these will also be solutions

$$\vec{X}_P = \begin{pmatrix} e^t \\ 1 \\ 0 \end{pmatrix}$$

Particular solution of the system CHECK!

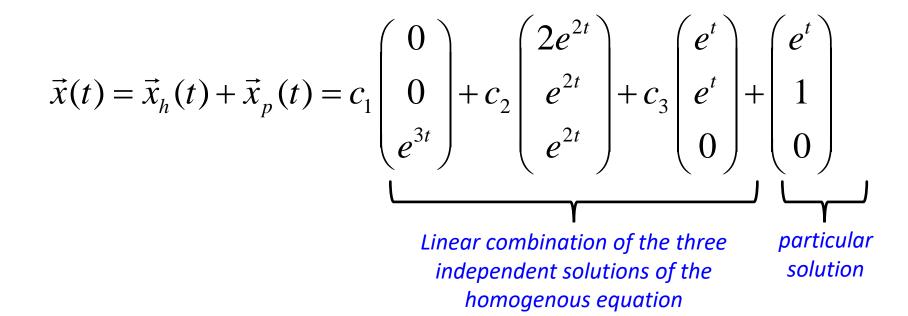
The Superposition Principle for Homogenous Linear DE Systems

If $\vec{x}_1(t), \vec{x}_2(t), \dots, \vec{x}_n(t)$ are linearly independent solutions to the homogenous equation $\vec{X}'(t) = A(t)\vec{X}(t)$ then any linear combinations of these, i.e.

$$c_1\vec{x}_1(t) + c_2\vec{x}_2(t) + \dots + c_n\vec{x}_n(t)$$

is also a solution to that equation for any set of real constants c_1, c_2, \ldots, c_n

Using this Superposition Principle and the homogenous and particular solutions obtained earlier -



We need to show that
$$\vec{x}_1 = \begin{pmatrix} 0 \\ 0 \\ e^{3t} \end{pmatrix}$$
, $\vec{x}_2 = \begin{pmatrix} 2e^{2t} \\ e^{2t} \\ e^{2t} \end{pmatrix}$, $\vec{x}_3 = \begin{pmatrix} e^t \\ e^t \\ 0 \end{pmatrix}$ are linearly independent on $(-\infty, \infty)$

Step 1: Choose a point, say $t_0 = 0 \in (-\infty, \infty)$

Step 2: Calculate $\vec{x}_1(t_0), \vec{x}_2(t_0), \vec{x}_3(t_0)$ and form the column space matrix

$$C = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

The columns of \boldsymbol{c} are obviously independent but we will confirm that in the next slide by computing rref(c)

Step 3: Test for linear independence of the columns of C by computing

$$rref(C) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Clearly, the column vectors of C must be linearly independent

Alternatively, this could have been shown by calculating and showing that $\det(C) \neq 0$

In general, for a $n \times n$ linear system, we need n linearly independent solutions $\vec{X}_1(t), \vec{X}_2(t), \dots, \vec{X}_n(t)$ to form a basis for the solution space with the general solution to the homogenous system given by

$$\vec{X}_h = c_1 \vec{X}_1(t) + c_2 \vec{X}_2(t) + \dots + c_n \vec{X}_n(t)$$
 $c_1, c_1, \dots c_n \in \mathbb{R}$

Fundamental Matrix:

Note that $\overrightarrow{X_h}$ can also be expressed as follows -

$$\vec{x}_h(t) = c_1 \begin{pmatrix} 0 \\ 0 \\ e^{3t} \end{pmatrix} + c_2 \begin{pmatrix} 2e^{2t} \\ e^{2t} \\ e^{2t} \end{pmatrix} + c_3 \begin{pmatrix} e^t \\ e^t \\ 0 \end{pmatrix} \quad \text{OR} \quad \begin{pmatrix} 0 & 2e^{2t} & e^t \\ 0 & e^{2t} & e^t \\ e^{3t} & e^{2t} & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

$$\begin{pmatrix} \begin{vmatrix} 1 & 1 \\ \vec{X}_1 & \vec{X}_2 & \vec{X}_3 \\ | & | & | \end{pmatrix}$$

$$\vec{X}(t) \quad \vec{C}$$
Fundamental
Matrix

Fundamental Matrix X(t) (continued)

(i) $det(X(t)) \neq 0$

One can also show that X'(t) = AX(t)

(ii) The Fundamental Matrix is NOT unique

A different set of linearly independent solutions will produce a different X(t) but that $\vec{x}_h = X(t)\vec{c}$ would hold

How do we find \vec{x}_h and \vec{x}_p for a System of Linear ODEs?

Consider the Homogenous Solution \vec{x}_h first, i.e. the solution of $\vec{X}' = A\vec{X}$

If we choose solutions of the form $\vec{x} = e^{\lambda t} \vec{v}$,

then substituting in X'(t) = AX(t)

gives $\lambda e^{\lambda t} \vec{v} = A e^{\lambda t} \vec{v}$

Factoring this, we get $e^{\lambda t}(A - \lambda I)\vec{v} = \vec{0}$

Since $e^{\lambda t}$ can never be zero, we need to find λ and \vec{v} such that $(A - \lambda I)\vec{v} = \vec{0}$

But a scalar λ and a non-zero vector \vec{v} satisfying $(A - \lambda I)\vec{v} = \vec{0}$ are the *eigenvalue* and *eigenvector* of the matrix A

Considering the eigenvalues of A, we will have three main cases –

- (i) Distinct Real Eigenvalues
- (ii) Repeated Real Eigenvalues
- (iii) Complex Eigenvalues

for the eigenvalues of A in X'(t) = AX(t)

Case (i): X'(t) = AX(t) has real eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ $\lambda_i \neq \lambda_j$ for $i \neq j$ and the corresponding eigenvectors are $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$

Note that the eigenvalues are not repeated and, therefore, n independent eigenvectors can be found

For this case, the **General Homogenous Solution** is of the form –

$$\vec{x}(t) = c_1 e^{\lambda_1 t} \vec{v}_1 + c_2 e^{\lambda_2 t} \vec{v}_2 + \dots + c_n e^{\lambda_n t} \vec{v}_n$$

Note that in the case of repeated eigen values, i.e. $\lambda_i = \lambda_j$ $i \neq j$, we will need either independent eigenvectors or generalized eigenvectors, as discussed later

Example

Consider the following system of ODEs with initial conditions x(0) = 3, y(0) = 1

$$\frac{dx}{dt} = -2x + y$$

$$\frac{dy}{dt} = x - 2y$$

$$\vec{X}' = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} \vec{X}; \quad \vec{X}(0) = \begin{pmatrix} 3\\ 1 \end{pmatrix}$$

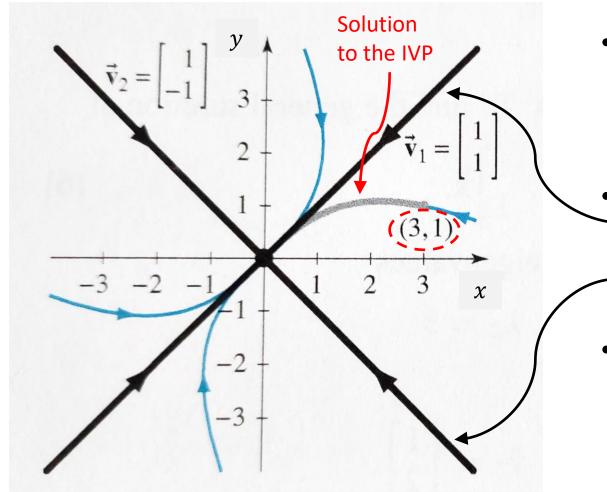
For this, eigenvalues are $\lambda_1 = -1$, $\lambda_2 = -3$ and eigenvectors $\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

General Solution:
$$\vec{x}(t) = c_1 e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Using the given initial condition $\vec{X}(0) = {3 \choose 1} = c_1 {1 \choose 1} + c_2 {1 \choose -1} \Rightarrow c_1 = 2, c_2 = 1$

$$\vec{x}(t) = 2e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + e^{-3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Alternatively,
$$\vec{x}(t) = X(t)\vec{c} = \begin{pmatrix} e^{-t} & e^{-3t} \\ e^{-t} & -e^{-3t} \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2e^{-t} + e^{-3t} \\ 2e^{-t} - e^{-3t} \end{pmatrix}$$



Phase Portrait

(Stable Equilibrium at origin, solution from (3,1) in grey)

 Trajectories move towards or away from the equilibrium according to the sign of the eigenvalues (-ive or +ive) associated with the eigenvectors

Along each eigenvector is a unique trajectory called a **SEPRATRIX** that separates the trajectories curving one way from those curving the other way

The equilibrium occurs at the origin and the phase portrait is symmetric about this point

Case (ii): X'(t) = AX(t) with repeated eigenvalues $\lambda_1, \lambda_2 = \lambda$ and with only one eigenvector \vec{v}

Construct an **additional linear independent vector** \overrightarrow{u} as follows

Step (i): Find \vec{v} corresponding to λ

Step (ii) Find a new $\vec{u} \neq \vec{0}$ such that $(A - \lambda I)\vec{u} = \vec{v}$

Step (iii) With these, try $\vec{x}(t) = c_1 e^{\lambda t} \vec{v} + c_2 e^{\lambda t} (t \vec{v} + \vec{u})$

 \overrightarrow{u} is referred to as the **Generalized Eigenvector** of A

But it is not really an eigenvector as $A\vec{u} \neq \hat{\lambda} \vec{u}$

Why this approach works?

Let $\overrightarrow{X}_2(t) = e^{\lambda t}(t\overrightarrow{v} + \overrightarrow{u})$ where we are given that

(a) eigenvalue λ and eigenvector \vec{v} satisfy $(A-\lambda I)\vec{v}=\vec{0}$ and (b) $\vec{X}_1(t)=e^{\lambda t}\vec{v}$ is a solution of $\vec{X}'=A\vec{X}$, i.e. $\vec{X}_1'=A\vec{X}_1$

Show that $\overrightarrow{X}_2' = A\overrightarrow{X}_2$ if we can find \overrightarrow{u} such that $(A - \lambda I)\overrightarrow{u} = \overrightarrow{v}$

Substituting, $e^{\lambda t}(\vec{v} + \lambda t I \vec{v} + \lambda I \vec{u}) = e^{\lambda t}(t A \vec{v} + A \vec{u})$ and equating the coefficients of $t e^{\lambda t}$ and $e^{\lambda t}$ on the LHS and RHS of this equation, we get –

- 1. Coefficient of $te^{\lambda t}$: $(A \lambda I) \vec{v} = \vec{0}$ This is the original eigenvalue equation that we already had
- 2. Coefficient of $e^{\lambda t}$: $(A \lambda I)\vec{u} = \vec{v}$ We need to solve this to find \vec{u} and use it to find $\vec{X}_2(t) = e^{\lambda t}(t\vec{v} + \vec{u})$

Example: Consider
$$\vec{X}' = A\vec{X} = \begin{pmatrix} 2 & -1 \\ 4 & 6 \end{pmatrix} \vec{X}$$

Example: Consider
$$\vec{X}' = A\vec{X} = \begin{pmatrix} 2 & -1 \\ 4 & 6 \end{pmatrix} \vec{X}$$
 Eigenvalue $\lambda = 4$ (repeated)

Eigenvector $\vec{v} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

One solution $\vec{x}_1(t) = e^{4t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

If we follow the earlier approach of Lecture 1 of Module 3 then we should try our second solution as $\vec{x}_2(t) = te^{4t}\vec{v}$. However, substituting this $\vec{x}_2(t)$ in $\vec{X}' = A\vec{X}$, we find that this does not work!

> See Example 6, pg. 363 of Farlow textbook

Example: Consider
$$\vec{X}' = A\vec{X} = \begin{pmatrix} 2 & -1 \\ 4 & 6 \end{pmatrix} \vec{X}$$
 Eigenvalue $\lambda = 4$ (repeated)

Eigenvector $\vec{v} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

One solution $\vec{x}_1(t) = e^{4t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

Eigenvalue $\lambda = 4$ (repeated)

Instead, we try a Generalized Eigenvector \vec{u} such that $\vec{x}_2(t) = e^{4t}(t\vec{v} + \vec{u})$ is a solution to $\vec{x}_2' = A\vec{x}_2$

This can be simplified to (1) $(A-4I)\vec{v}=\vec{0}$ and (2) $(A-4I)\vec{u}=\vec{v}$ by equating the coefficients of e^{4t} and te^{4t} on both sides of $\vec{x}_2' = A\vec{x}_2$

Here (1) is the original eigenvalue equation for $\lambda = 4$ and $\vec{v} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ and will not give us anything new

For (2),
$$(A - 4I)\vec{u} = \vec{v} \implies \begin{pmatrix} -2 & -1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \implies 2u_1 + u_2 = -1$$

Choosing
$$u_1 = K(say) \Rightarrow u_2 = -2K-1$$
 or $\vec{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = K\begin{pmatrix} 1 \\ -2 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \end{pmatrix}$

Therefore,
$$\vec{x}_2(t) = te^{4t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} + Ke^{4t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} + e^{4t} \begin{pmatrix} 0 \\ -1 \end{pmatrix} \Rightarrow \vec{x}_2(t) = te^{4t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} + e^{4t} \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

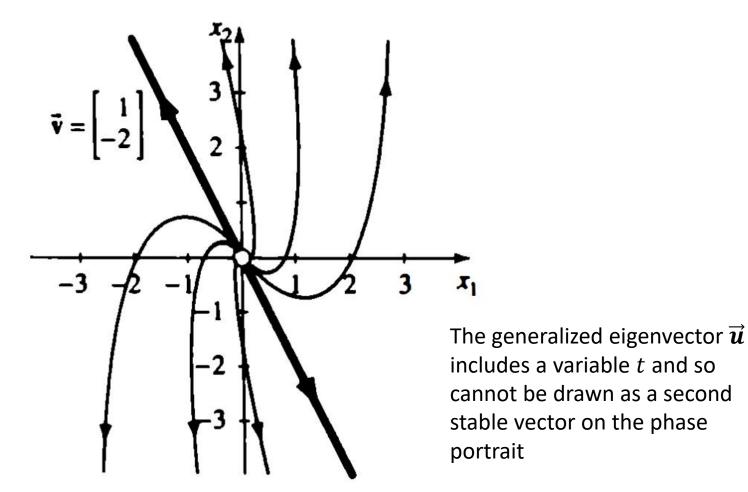
We drop the middle term as that is just a multiple of our first solution

The two solutions are then -

$$\vec{x}_1(t) = e^{4t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
 and
$$\vec{x}_2(t) = e^{4t} \begin{pmatrix} t \\ -2t - 1 \end{pmatrix}$$

Final Solution

$$\vec{x}(t) = c_1 e^{4t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} + c_2 e^{4t} \begin{pmatrix} t \\ -2t - 1 \end{pmatrix}$$



Phase Portrait with

- (a) Unstable Equilibrium at the origin
- (b) Double Eigenvalue at $\lambda_1 = \lambda_2 = 4$
- (c) A single eigenvector

Subsequent Lectures:

- (i) Complex Eigenvalues
- (ii) Particular solutions \vec{X}_p for systems of linear ODEs
- (iii) Phase Portraits and Stability Analysis