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Rapidly rotating turbulent flow is characterized by the emergence of columnar structures that are representative
of quasi-two-dimensional behavior of the flow. It is known that when energy is injected into the fluid at an
intermediate scale Lf , it cascades towards smaller as well as larger scales. In this paper we analyze the flow
in the inverse cascade range at a small but fixed Rossby number, Rof ≈ 0.05. Several numerical simulations
with helical and nonhelical forcing functions are considered in periodic boxes with unit aspect ratio. In order to
resolve the inverse cascade range with reasonably large Reynolds number, the analysis is based on large eddy
simulations which include the effect of helicity on eddy viscosity and eddy noise. Thus, we model the small scales
and resolve explicitly the large scales. We show that the large-scale energy spectrum has at least two solutions:
one that is consistent with Kolmogorov-Kraichnan-Batchelor-Leith phenomenology for the inverse cascade of
energy in two-dimensional (2D) turbulence with a ∼ k

−5/3
⊥ scaling, and the other that corresponds to a steeper

∼ k−3
⊥ spectrum in which the three-dimensional (3D) modes release a substantial fraction of their energy per unit

time to the 2D modes. The spectrum that emerges depends on the anisotropy of the forcing function, the former
solution prevailing for forcings in which more energy is injected into the 2D modes while the latter prevails
for isotropic forcing. In the case of anisotropic forcing, whence the energy goes from the 2D to the 3D modes
at low wave numbers, large-scale shear is created, resulting in a time scale τsh, associated with shear, thereby
producing a ∼ k−1 spectrum for the total energy with the horizontal energy of the 2D modes still following a
∼ k

−5/3
⊥ scaling.
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I. INTRODUCTION

The emergence of anisotropy in rotating flows has been
studied extensively since the seminal work of Taylor and
Proudman [1–3]. More recently it has been observed both
experimentally [4,5] and numerically [6] for the velocity field,
as well as for passive scalar fluctuations using a reduced model
[7,8] and direct numerical simulations (DNSs) [9]. While
linear theory like the Taylor-Proudman theorem (see, e.g.,
Ref. [10]) explains the existence of the columnar structures
in the laminar regime, more recent theories account for the
nonlinearities in the flow and shed light on the mechanism of
two-dimensionalization of the flow from an initial isotropic
state [11–13].

An interesting feature of such flows is the transfer of
energy to large scales on application of external forcing
[14–16]. However, there has been little consensus about the
scaling of the energy spectrum at large scales. The numerical
simulation of Ref. [15] reports a steep ∼k−3

⊥ spectrum,
whereas Ref. [14,16] show a more conventional ∼k

−5/3
⊥ scaling

that is reminiscent of two-dimensional (2D) Kolmogorov-
Kraichnan-Batchelor-Leith (KKBL) phenomenology for an
inverse cascade of energy [17] (also see Ref. [18]). In Ref. [19],
a model is used to show that a ∼k

−5/3
⊥ spectrum for the

2D modes (also called “slow modes”) results when triadic
interactions between the 2D and the 3D (“fast”) modes are
discounted for artificially, but a ∼k−3

⊥ spectrum is observed
when all interactions are accounted for. Besides, a ∼k−3

⊥ law
for the horizontal kinetic energy spectra is also observed in a

rapidly rotating Rayleigh-Bénard convection using a reduced
model [20]. It must be pointed out that the conserved quantities
(for an inviscid fluid) in the case of 2D flows, viz., energy
and enstrophy, are different from the 3D case, where energy
and helicity (the correlation between velocity and vorticity)
are conserved. Therefore, the physical mechanism leading
to an inverse cascade of energy in the 3D case does not
follow immediately from its 2D counterpart. Besides, the
nature of forcing, i.e., spectrally isotropic versus anisotropic
(equivalently 3D vs 2D), with three or two spatial components
(3C vs 2C), and the aspect ratio of the computational box may
play significant roles in the dynamics of the flow.

In this paper we revisit the issue of inverse cascade of energy
in rotating flows within a specific framework, viz., fixed
Rossby number and unit aspect ratio of the computational box.
However, we explore different forcing functions to consider
the effects of spectral anisotropy and of helicity in the inverse
cascade range. We present results from numerical simulations
that use a subgrid-scale model developed in Ref. [21]; this
model was validated against DNS of rotating flows in Refs.
[22–24]. We show that the two observed spectra, viz., ∼k

−5/3
⊥

and ∼k−3
⊥ can arise in full simulations (simulations that resolve

all triadic interactions and account for coupling between the
2D and the 3D modes). When the forcing is isotropic, energy
goes from the 3D to the 2D modes and a ∼k−3

⊥ spectrum results
for the energy in the slow modes. When more energy is pumped
into the 2D modes, less energy goes from the 3D to the 2D
modes and a ∼k

−5/3
⊥ spectrum is seen for the slow modes.
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The kinematics of the nonlinear advection term also
changes significantly as the spectra of slow modes change
from ∼k−3

⊥ to ∼k
−5/3
⊥ . We study the velocity gradient tensor

in all simulations and compute the largest eigenvalue of the
rate of strain tensor. For the case of anisotropic forcing when
the flux of energy between the 3D and the 2D modes reverses
and energy at large scales goes from the 2D to the 3D modes,
a significant amount of shear is created at large scales. This
introduces a new shear time scale τsh that is independent of
wave number. As a result, the spectrum for the total energy
approaches a ∼k−1 power law.

The remainder of this paper is organized as follows. In
Sec. II we discuss previous results, introduce equations and
notations used in the rest of the paper, and derive equations
to study the coupling between modes and the energy transfer
between scales. In Sec. III we present the LES model used
in the numerical simulations and describe all the runs as well
as the different spectra used to characterize scaling laws in
the inverse cascade range. Finally, in Sec. IV we present and
discuss the numerical results, while in Sec. V we conclude
with brief remarks and pointers to some open questions.

II. INERTIAL WAVES AND ENERGY TRANSFER TO THE
SLOW MANIFOLD

A. Equations

The nondimensionalized incompressible Navier-Stokes
equations with global rotation, � = �ẑ, are as follows:

∂tu + (u · ∇)u + 1

Ro
ẑ × u = −∇P + 1

Re
∇2u + f, (1)

∇ · u = 0, (2)

where u is the instantaneous velocity field, P is the pressure
term, f is an external force per unit of mass, the Rossby number
is Ro = U0(2L0�)−1 (where U0 and L0 are, respectively,
normalized velocity and length scales taken to be unity),
and the Reynolds number is Re = U0L0/ν (where ν is the
kinematic viscosity).

The forcing term f is introduced in the Navier-Stokes
equation to study the inverse cascade of energy. In the
simulations presented in this paper, besides Re and Ro defined
at characteristic length scales, we will be interested primarily
in the Reynolds and Rossby numbers based on the forcing
scale Lf , at which the external force is applied. The latter
quantities are defined as follows:

Ref = Lf U

ν
, (3)

and

Rof = U

2Lf �
, (4)

where U is the r.m.s. velocity before the inverse cascade is
initiated (or equivalently, the r.m.s. velocity at the forcing scale
at any time during the simulation) in units of U0. The time scale
associated with forcing wave number is defined as

τf := Lf

U
. (5)

B. Resonant interactions, slow manifold,
and large-scale structures

In this subsection we briefly review results obtained in
previous works that will be useful to interpret the numerical
simulations in the following sections.

The linear, inviscid approximation of Eq. (1) in the absence
of forcing has wave solutions called inertial waves [10].
These waves are circularly polarized and are helical (i.e., the
velocity and the vorticity can be parallel or antiparallel). The
general solution of the linear problem can thus be written as a
superposition of waves:

u(x) = �k,sa
s(k)hs(k) exp ik · x, (6)

where k is the wave vector and s = ±1 the polarization of the
wave [25] and hs is the Craya-Herring helical basis [26,27].

The amplitude as(k) is associated with the helical wave
with a dispersion relation for the wave frequency

ωs(k) = 2�s
k‖
k

.

In a turbulent flow the amplitudes will be time dependent,
as(k,t), and their slow evolution (for strong rotation) is associ-
ated with vortical motions that modulate the fast waves. Clearly
ωs(k) = 0 implies a flow restricted to a plane perpendicular
to the rotation axis (i.e., k‖ = 0). Hence, 2D modes are also
known as slow modes. In other words, 2D modes in a rotating
turbulent flow must correspond to pure vortical motions instead
of waves.

Replacing the expansion (6) in Eq. (1), using orthogonality
of the modes in Fourier space, and averaging over the period
of a wave, the equation can be rewritten as [25]

∂ta
sk (t) = Ro

∑
sp,sq

∫
k+p+q=0

C
skspsq

kpq as�
pas�

q

× ei(ωsk
+ωsp +ωsq )t dp dq, (7)

where � denotes complex conjugate; C
skspsq

kpq = (sqq −
spp)(h∗

sp
× h∗

sq
) · h∗

sk
/2 is the modal transfer coefficient result-

ing from the convolution integral with the three k,p,q modes
in interaction, and Ro is assumed to be small and therefore
represents rapid rotation (hence weak nonlinearity).

Note that Eq. (7) is exact and (quadratically) nonlinear;
therefore, it is not closed in terms of the dynamical statistical
evolution of the basic field ask (t). Hence, a closure hypothesis
is needed to deal with the temporal evolution of the moments
(or cumulants) of the velocity, such as the energy spectrum;
many closure schemes have been derived in the literature (see,
e.g., Ref. [28] for a thorough discussion on closed models), but
in the case of wave turbulence theory, a natural closure arises
when Ro is sufficiently small (see Ref. [29] and references
therein, Ref. [30] for Rossby waves, and Ref. [31] for the case
of inertial waves).

From the nonlinear term in Eq. (7), note the usual condition
for the triadic interactions k + p + q = 0 in isotropic and
homogeneous turbulence is replaced by

sk

k||
k

+ sp

p||
p

+ sq

q||
q

= O(Ro) with k + p + q = 0. (8)

The mechanism of transfer of energy towards 2D modes that
is responsible for the formation of Taylor columns is based
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on this near resonant condition of the interacting triads [25].
However, the problem with wave turbulence theory as applied
to inertial waves is that it is not valid for too small values of
k‖. In fact, the predicted energy transfer is zero for k‖ = 0 [31]
because 2D and 3D modes are decoupled in such theories at
lowest order. Similar analysis is presented using two-point
closures of turbulence, such as the Eddy Damped Quasi-
Normal Markovian (EDQNM) closure developed earlier in
the context of rotating flows (see, e.g., Ref. [32]). Even a
sophisticated asymptotic quasinormal Markovian theory, built
on the EDQNM closure [33,34] does not deal with k‖ = 0.
Thus, while the gradual concentration of energy in close
proximity of the slow manifold can be theoretically justified
to explain numerical and experimental observations, the exact
coupling between the slow manifold and the 3D modes leading
to a transfer of energy from 3D to 2D modes still remains an
unresolved problem. The inverse cascade of energy, that will
be further elaborated upon in Sec. IV, presumably happens in
this slow manifold.

An alternative theory on the egression of columnar struc-
tures (and the growth of energy in 2D modes) is given
by Ref. [12]; it is based on the conservation of linear
momentum Pz = 1

2

∫
VR

(x × ω)z dV and of angular momentum
Lz = ∫

VR
(x × u)z dV in the axial direction (within a cylinder

of radius R), resulting in a relative concentration of the kinetic
energy density within this cylinder, where it disperses to form
columnar clouds. This holds in the linear time scale �−1, when
the nonlinear term is small and hence can be neglected in
comparison with the Coriolis term (U0 � �L0). However, the
percentage of total energy contained within the cylinder falls as
(�t)−1, so the columns eventually become weak, although the
energy density remains higher within the cylinder than outside.
The time scale associated with this process, τ� ∼ �−1, will be
relevant for the analysis of the inverse cascade regime in the
following sections.

C. Coupling between modes and energy transfer

Lewis Fry Richardson’s famous couplet, “Big whirls have
little whirls that feed on their velocity, and little whirls have
lesser whirls and so on to viscosity” is the antithesis of
observations made by experimentalists [5] and analysts [15,16]
in the context of rotating turbulence.

The notion of inverse cascade of energy to large scales is
well known in 2D turbulence [35] (also see, e.g., Ref. [18])
and may be justified in simple terms on the basis of Fjørtoft’s
theorem due to the conservation of quadratic invariants (see,
e.g., Ref. [28]). In other words, nonlinear triadic interactions
conserve both the energy and the enstrophy, Z := 〈ω2〉/2, and
as the latter is advected towards smaller scales, a fraction of the
energy cascades towards larger scales to maintain the balance
in each triad. As discussed in the introduction, the justification
for an inverse cascade of energy in 3D rotating turbulence is not
so straightforward since the conservation laws change in three
dimensions. Nevertheless, a similar argument could be made
in the case of 3D flows based on helicity and the possibility
of an inverse cascade of energy may be alluded to, as has
been explained in Refs. [25,36]. In fact, it has been argued
in Ref. [25] that interactions between three helical modes of
the same polarization s, will lead to an inverse energy cascade

for the same reason as has been postulated by Kraichnan [17]
and Fjørtoft in the 2D case. Numerical simulations of three
dimensional flows, where the nonlinear interactions have been
restricted to identically polarized wave numbers in all triads,
further corroborate the aforementioned argument [37].

In the previous subsection we have summarized theories
that clearly vindicate the notion of a gradual transfer of energy
towards the slow manifold, without being able to formally
account for the exact coupling between the 3D and the 2D
modes. However, once the energy is in the 2D modes and if
the coupling between the 2D and the 3D modes is weak, one
can naively expect an inverse cascade to develop as in the
case of 2D turbulence. The strength of the coupling between
the 2D and the 3D modes has been studied by Ref. [38] and
also in Ref. [39] using numerical simulations. In the case
of infinitely small Ro and in a periodic box, the 2D modes
are expected to decouple from the 3D modes and evolve
under their own dynamics. This is in agreement with the
evidence of decoupling between the 2D and the 3D modes
that was observed in numerical simulations of freely decaying
rotating turbulence [40] and of ideal helical rotating flows [41].
However, note that some authors claim that these modes never
decouple in infinite domains [42].

The decoupling is further illustrated below based on the
presentation in Ref. [39] and extended to consider the flux of
energy interchanged between the 2D and the 3D modes. It is
important to note that Refs. [39–41] studied rotating flows in
the absence of forcing, thereby making a case for analyzing a
completely decoupled set of equations for the 2D and the 3D
modes; however, Ref. [43] considers the effect of forcing.

We write wave numbers in 3D Fourier space using cylindri-
cal coordinates, k = (k⊥,k‖), with k⊥ = (kx,ky,0) = (ρk,φk),
k|| = (0,0,kz), and k = |k|. We denote the 2D modes in Fourier
space as u2D(k⊥), and the 3D or wave modes as u3D(k).
Following Ref. [39], wave vectors are decomposed as follows:

Wk := {k such that |k| �= 0 and k|| �= 0},
Vk := {k such that |k| �= 0 and k|| = 0}.

Then the velocity field u = (u,v,w) can be decomposed as

u(k) =
{

u3D(k) if k ∈ Wk

u⊥(k⊥) + w(k⊥)ẑ if k ∈ Vk

, (9)

where u2D(k⊥) = u⊥(k⊥) + w(k⊥)ẑ. Likewise, the total en-
ergy E = ∑

k |u(k)|2/2 may be written in terms of the modal
components as E = E3D + E2D = E3D + (E⊥ + Ew), where
E3D = ∑

k∈Wk
|u(k)|2/2, E⊥ = ∑

k⊥ |u2D(k⊥)|2/2, and Ew =∑
k⊥ |w(k⊥)|2/2.
Multiplying the spectral form of Eq. (1) by u�(k) and

integrating over all wave numbers in Wk and Vk , respectively,
results in two differential equations for the total energy in the
wave and the slow modes as follows:

dtE3D = �2D→3D − �3D + ε3D, (10)

dtE2D = −�2D→3D − �2D + ε2D, (11)

where the ε3D and ε2D terms refer to the corresponding
components of the forced energy injection, and 3D (2D)
refers to k|| �= 0 (k|| = 0), as stated before. Equations (10)
and (11) are congruous to the equations derived in Ref. [39].
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When positive, the term �3D refers to the 3D energy that is
transferred to small scales and dissipated per unit of time (thus
balancing the ε3D term) and results from triadic interactions
that move energy from the 3D modes to the 3D modes (resonant
interactions involving three fast modes or those between two
fast modes and one slow mode). Similarly, the term �2D results
from all triadic interactions that move energy from the 2D
modes to the 2D modes, and, when positive, its net effect is to
balance the injection of energy per unit time in the 2D modes.
Finally, �2D→3D is the flux of energy across k|| = 0 in Fourier
space, i.e., energy going from the 2D to the 3D modes when
�2D→3D(t) > 0. This term is expected to be O(Ro) [39], and
as a result, in the limit of zero Ro, the slow manifold decouples
from the wave modes and the energy equations (10) and (11)
are as follows:

dtE3D = −�3D + ε3D,

dtE2D = −�2D + ε2D.

It can be emphasized that, in this limit, �2D involves only
triadic interactions between slow modes and �3D involves
interactions between fast modes. Moreover, the equation for
the evolution of the 2D energy further decouples into equations
for E⊥ and Ew (see, e.g., Ref. [39]).

III. NUMERICAL SIMULATIONS AND SUBGRID
SCALE MODEL

A. Large eddy simulations

We integrate the Navier-Stokes equation (1) in a rotating
frame of reference using a parallel pseudospectral code with
periodic boundary conditions [44]. A second order Runge-
Kutta method is used to evolve the equations in time, and no
dealiasing is done because a LES is used; so the maximum
resolved wave number is kc = N/2, where N is the linear
resolution. As large-scale separation between the box size and
the forcing scale is essential to study inverse cascades with
reasonably large values of the Reynolds number, we use large
eddy simulations (LESs). The subgrid-scale model is such that
the wave numbers below a cutoff wave number kc are resolved
explicitly, whereas larger wave numbers are modeled based on
energy and helicity contributions to the eddy viscosity and the
eddy noise terms in the EDQNM equations. For completeness,
the model is summarized below.

First, the larger resolved scales are computed by integrating
the following equation:[

∂

∂t
+ k2

(
1

Re
+ νk|kc

)]
uα(k,t)

= T <
α (k,t) − 1

Ro
Pαβ εβγ ζ uζ (k,t) + fα(k,t), (12)

which is basically the Fourier transform of Eq. (1) (barring the
newly introduced subgrid model term νk|kc

). Here the Greek
subindices denote Cartesian components of the vectors and
tensors and Einstein summation convention is assumed. The
term T <

α (k,t) is the Fourier transform of the nonlinear term in
Eq. (1) over all modes with k < kc. In other words, it represents
the nonlinear transfer that arises from the convolution sum over
a truncated triadic domain, k + p + q = 0, k,p,q < kc. This
term is computed using the pseudospectral method. The eddy

viscosity term νk|kc
is associated with the subgrid model and

is computed based on parameters that are modeled from the
unresolved scales. Pαβ(k) = δαβ − kαkβ

k2 is the projector opera-
tor on the solenoidal velocity field, and ε is the antisymmetric
tensor associated with the curl operator (Levi-Civita symbol).

The isotropic energy spectrum E(k,t) and the helicity
spectrum H (k,t) up to wave number 3kc (including unresolved
scales) are then obtained through data fitting and extrapolation
from the resolved scales. Next, the isotropic energy spectrum
E(k,t) for the unresolved scales is evolved based on the
following:

(∂t + 2νk2)E(k,t) = −2νk|kc
k2E(k,t) − 2ν̃k|kc

k2H (k,t)

+ T <
E (k,t) + T̂

pq

E (k,t)

4πk2
. (13)

An equivalent balance equation for the unresolved helicity
spectrum H (k,t) is solved if the helicity of the flow is nonzero
(note: when H ≡ 0, we have ν̃ ≡ 0). Here νk|kc

and ν̃k|kc
are

terms prescribed by the model as before, T <
E (k,t) represents

the energy transferred to unresolved scales from the resolved
scales, and T̂

pq

E represents the energy and helicity interactions
at wave numbers p,q > kc. The analytical forms of the above
terms come from a two-point analysis of an integro-differential
equations originating from the EDQNM closure for isotropic
Navier-Stokes turbulence. Thus, our model assumes that
isotropy is recovered at sufficiently small scales (smaller than
the Zeman scale), as was recently shown in a large DNS of
rotating turbulence [45]. It may be noted here that the LES
was able to reproduce the results of this DNS on a grid of
30723 points in which the Zeman scale was resolved [23].
Finally, eddy noise (upscaling of energy towards the resolved
scales from the unresolved scales) is added to the velocity field
based on a reconstruction of Eq. (13). The reader is referred to
Ref. [21] [see Eqs. (27) and (28)] for further explanation.

B. Description of the runs

Since the main aim of this paper is to study the inverse
cascade of energy, all simulations are forced at high wave
numbers kf to ensure sufficient scale separation between
the forcing and the box scale. We explore different forcing
functions in order to consider the effects of spectral anisotropy,
number of components in the forcing, and the role of helicity
on the dynamics of the flow at large scales (see Table I).

For the Taylor-Green (TG) run, f in Eq. (1) is the following
[46]:

fTG = f0 [sin(kT Gx) cos(kT Gy) cos(kT Gz)x̂

− cos(kT Gx) sin(kT Gy) cos(kT Gz)ŷ] , (14)

where f0 = 5.0 is the forcing amplitude. Such a forcing
function injects zero net helicity in the flow excites only two
components of the flow (u and v, although w also grows with
time as a result of pressure forces). fT G injects energy only
into a few 3D modes (no energy is injected directly into modes
with k‖ = 0). The expression in Eq. (14) has many symmetries
that are preserved during the evolution of the Navier-Stokes
equation. To break these symmetries and reach a turbulent
steady state faster, a superposition of two TG forcing functions
acting at kT G = 21 and 22 was used. Since TG forcing involves

036319-4



ANISOTROPY AND NONUNIVERSALITY IN SCALING . . . PHYSICAL REVIEW E 86, 036319 (2012)

TABLE I. Runs with the total relative helicity of the flow ρH ,
the anisotropy exponent β, the forcing scale Rossby and Reynolds
numbers Rof and Ref , the energy injection rate ε, and the power
law index in the inverse cascade range of the horizontal kinetic
energy spectrum of the 2D modes. TG, ABC, RND, and ANI,
respectively, stand for Taylor-Green, ABC, random, and random
anisotropic forcing. Note that ρH is the relative helicity of the flow
at the time when the inverse cascade starts, i.e., at t = 0 in the run
with rotation. All runs use a grid with N = 256 points, a forcing
wave number kf = 40, an imposed rotation � = 35, and a kinematic
viscosity ν = 2 × 10−4.

Run ρH β Rof Ref ε Index

TG 8 × 10−3 – 0.045 390 0.030 ≈ −3
RND1 9 × 10−3 – 0.045 390 0.047 ≈ −3
RND2 8 × 10−2 – 0.044 390 0.050 ≈ −3
RND3 5 × 10−1 – 0.046 420 0.047 ≈ −3
RND4 7 × 10−1 – 0.044 420 0.047 ≈ −3
ANI1 1 × 10−2 1 0.045 400 0.010 ≈ −3
ANI2 8 × 10−3 2 0.045 400 0.010 ≈ −3
ANI3 8 × 10−3 3 0.045 420 0.007 ≈ −5/3
ANI4 7 × 10−1 3 0.045 420 0.006 ≈ −5/3
ABC 7 × 10−1 – 0.050 470 0.090 ≈ −5/3

products of three modes in Fourier space, the effective forcing
wave number is kf = √

3 min{kT G} ≈ 40, while the projection
of the forcing wave number into the plane of 2D modes is
k⊥,f = √

2 min{kT G} ≈ 30.
In order to study the effect of helicity, we also performed

simulations using the Arnold-Childress-Beltrami (ABC) forc-
ing [47]:

fABC = f0{[B cos(kf y) + C sin(kf z)]x̂

+[A sin(kf x) + C cos(kf z)]ŷ

+[A cos(kf x) + B sin(kf y)]ẑ}, (15)

with A = 0.9, B = 1, and C = 1.1. ABC forcing is an
eigenfunction of the curl operator and injects maximum
helicity (i.e., fABC and ∇ × fABC are colinear). When the flow is
forced using this type of forcing function, turbulence develops
only after an instability sets in Ref. [48]. To speed up the
onset of turbulence, we forced the flow with a superposition
of two ABC flows at kf = 40 and 41. Henceforth, kf refers to
the minimum of the two forcing wave numbers. Note that the
ABC forcing excites only two 2D modes in the Fourier shell
with k = kf (in the kx and ky axis in Fourier space) and one
3D mode (in the k‖ axis).

We also used two types of randomly generated isotropic
forcings. In the first type (labeled RND in Table I), all modes
in spherical Fourier shells between kf = 40 and 41 were fired
with the same amplitude but random phases. The method
described in Ref. [49] was used to correlate phases and change
the helicity of the forcing from zero to maximal. This results
in isotropic forcing independent of the amount of helicity. As a
result, more energy is injected into 3D modes compared to 2D
modes. The second random forcing (labeled ANI in Table I)
corresponds to a case in which we introduce a new parameter,
β in order to control the extent of anisotropy in the forcing.
We define a new forcing function by multiplying each mode
in the RND forcing by a factor that concentrates the effective

forcing near the slow manifold:

fANI(k) =
(

1 − kz

kf

)β

fRND(k). (16)

Note that β = 0 corresponds to isotropic forcing. Refer to
Table I for the different values of β used in the simulations.

The simulations were started from a flow at rest and without
rotation and integrated up to ten large-scale turnover times
(τf = Lf /U ≈ 10) until a turbulent steady state with a well
developed direct energy cascade was attained. Next, at a time
arbitrarily relabeled t = 0, rotation was turned on and the
simulation was continued for at least 250 τf turnover times.
A fully developed inverse cascade of energy was observed by
this time in all the runs mentioned in Table I.

C. Anisotropic spectra

To study power laws in the resulting inverse cascade range
of the simulations we refer to both isotropic and anisotropic
energy and helicity spectra. The decomposition of the total
energy into energy in 2D and 3D modes, E2D and E3D

described above can be extended to spectral densities as
follows, based on the definitions presented in Ref. [45].

The isotropic total energy spectrum is computed in the
simulations as

E(k) = 1

2

∑
k�|k|<k+1

|u(k)|2 (17)

and is such that the total energy is E = ∑
k E(k). We can also

define an axisymmetric energy spectrum:

e(k⊥,k‖) = 1

2

∑
k⊥�|k×ẑ|<k⊥+1

k‖�kz<k‖+1

|u(k)|2 = e(k,θk), (18)

where, in the latter expression, θk is the colatitude in Fourier
space with respect to the rotation axis. The axisymmetric
energy spectrum is such that the total energy in 2D modes is
E2D = ∑

k⊥ e(k⊥,k‖ = 0) = ∑
k e(k,θk = π/2). As a result,

we refer to e(k⊥,k‖ = 0) as the energy spectrum of the 2D
modes.

The spectrum e(k⊥,k‖) can be further decomposed into a
perpendicular and parallel components as follows:

e(k⊥,k‖) = e⊥(k⊥,k‖) + e‖(k⊥,k‖), (19)

where the first term corresponds to the energy spectrum of
only the horizontal components of the velocity (u and v), and
the second to the vertical component (w).

Reduced perpendicular and parallel spectra can then be
defined as

E(k⊥) =
∑
k‖

e(k⊥,k‖) (20)

and

E(k‖) =
∑
k⊥

e(k⊥,k‖), (21)

respectively. As for the energy, E = ∑
k⊥ E(k⊥) = ∑

k‖ E(k‖).
We then introduce the isotropic and perpendicular energy
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spectra of the 3D modes:

E3D(k) = E(k) − e(k,θk = π/2) (22)

and

E3D(k⊥) = E(k⊥) − e(k⊥,k‖ = 0). (23)

Finally, we associate energy fluxes with the energy spectra
E(k), E(k⊥), and E(k‖). These are defined from the transfer
functions as follows:

T (k) = −
∑

k�|k|<k+1

u�(k) · ̂(u · ∇u)k, (24)

T (k⊥) = −
∑

k⊥�|k×ẑ|<k⊥+1

u�(k) · ̂(u · ∇u)k, (25)

and

T (k‖) = −
∑

k‖�kz<k‖+1

u�(k) · ̂(u · ∇u)k, (26)

where the superscript̂ denotes Fourier transformed quantities.
Then the fluxes are as follows:

�(k) = −
k∑

k′=0

T (k′), (27)

�(k⊥) = −
k⊥∑

k′
⊥=0

T (k′
⊥), �(k‖) = −

k‖∑
k′
‖=0

T (k′
‖). (28)

These fluxes represent energy per unit of time across spheres
in Fourier space with radius k, cylinders with radius k⊥, and
planes with k‖ = constant, respectively. In particular, note that
�(k‖ = 0) represents energy transferred from 2D to 3D modes
when positive, and from 3D to 2D modes when negative;
actually, �2D→3D is the flux across slow and fast modes defined
in Eqs. (10) and (11) in the previous section.

Similar definitions can be written for the helicity.

IV. NUMERICAL RESULTS

A. Time evolution and spectra

At the onset, we discuss the results for simulations with
TG, ABC, and RND forcing with and without helicity. The
perpendicular spectrum E(k⊥), the spectrum of 3D modes
E3D(k⊥), and the spectrum of the horizontal kinetic energy of
the 2D modes, e⊥(k⊥,k‖ = 0), at late times are all shown in
Fig. 1 for the TG, ABC, RND1, and RND4 runs. The ABC run
shows a spectrum e⊥(k⊥,k‖ = 0) ∼ k

−5/3
⊥ and E(k⊥) ∼k−1 at

large scales. All the other runs have e⊥(k⊥,k‖ = 0) ∼ k−3
⊥ .

The time evolution of the spectrum of the horizontal kinetic
energy e⊥(k⊥,k‖ = 0) for the same runs as in Fig. 1 is shown
in Fig. 2, from t = 0 to 250τf turnover times at intervals of
roughly 35.7τf turnover times.

The build-up of energy at large scales observed in the
spectra is associated with an inverse cascade of 2D energy in
the presence of rotation. This can be verified from the energy
flux that shows a positive range at wave numbers larger than
kf (associated with a direct cascade of energy) and a negative
range at wave numbers smaller than kf (associated with the
inverse cascade). Figure 3 shows �(k⊥) for runs TG, ABC,
and RND1. The same behavior is observed in the isotropic
flux �(k) (not shown).
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FIG. 1. E(k⊥), E3D(k⊥), and e⊥(k⊥,k‖ = 0) at late times for TG,
ABC, RND1, and RND4 forcing (from top to bottom).
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FIG. 2. Time evolution of the spectrum of the 2D energy
e⊥(k⊥,k‖ = 0) for run TG, ABC, RND1, and RND4 (top to bottom)
up to 250 turnover times at intervals of 35.7 turnover times.

20 40 60 80 100 120

−4

−2

0

2

4

6

8

x 10
−3

N
o

rm
al

iz
ed

Π
(k

⊥
,t

)

k
⊥

20 40 60 80 100 120

−0.02

0

0.02

0.04

0.06

0.08

N
o

rm
al

iz
ed

Π
(k

⊥
,t

)

k
⊥

20 40 60 80 100 120
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

N
o

rm
al

iz
ed

Π
(k

⊥
,t

)

k
⊥

FIG. 3. Energy flux �(k⊥) for runs TG, ABC, and RND1 (from
top to bottom). Solid lines are time averaged, and dashed lines are
instantaneous fluxes at late times. The fluxes are normalized to the
value at the forcing wave number.

The fluxes in Fig. 3 do not discriminate between 2D and 3D
modes, so although they confirm an inverse energy transfer,
they are not enough to identify what modes are responsible
for the large-scale pile up of energy. Figure 4 shows the time
evolution of E, E2D , and E3D for several runs. In all cases, E2D

grows monotonically in time after a short transient, thereby
driving a growth of the total energy E. However, the energy
in 3D modes, E3D can either slowly increase or decrease,
depending on the forcing. On the other hand, the enstrophy in
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FIG. 4. Time evolution of E, E2D , and E3D in runs TG, ABC,
and RND1 (from top to bottom).

2D modes

Z2D = 1

2

∑
k∈Vk

|ω|2 (29)

remains approximately constant once the inverse cascade starts
(see Fig. 5), implying the small scales have reached a steady
state. The enstrophy in 3D modes,

Z3D = 1

2

∑
k∈Wk

|ω|2, (30)

as well as the total enstrophy Z, increases or decreases
depending on the forcing function. In Fig. 5, note that
the transient regime at early times corresponds to a wave
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FIG. 5. Time evolution of the total enstrophy Z, enstrophy in 2D
modes Z2D , and enstrophy in 3D modes Z3D in runs TG, ABC, and
RND1 (from top to bottom).

dominated regime and is longer for TG forcing as already
reported in Ref. [50]. Indeed, in the TG case, oscillations in
E3D(t) and Z3D(t) with the frequency of inertial waves can be
seen clearly before t/τf ≈ 20.

B. The effect of anisotropic energy injection

Except for one case (ABC forcing), all simulations in
the previous subsection seem to show an inverse cascade
of 2D energy with a k−3

⊥ scaling. What is the origin of the
KKBL-like ∼k

−5/3
⊥ spectrum in the ABC run? Previous studies
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obtained KKBL scaling with elongated boxes [16] or when
all triadic interactions between 2D and 3D modes were shut
down [19] (which, in fact, corresponds to the case of KKBL
phenomenology). However, in our case we used a box with
fixed unit aspect ratio and with all triadic interactions and
coupling between modes accounted for in the simulations.

Helicity is the most conspicuous property of the flow
generated by ABC forcing, and it is known to affect the
direct cascade range in rotating flows [6,51]. However, it is
predominantly transferred to smaller scales as shown later
(see also Ref. [52]), and runs with isotropic but helical forcing
(RND4) also show ∼k−3

⊥ instead of KKBL scaling.
The difference between ABC forcing and the other forcing

functions is that fABC excites two 2D modes and one 3D mode
in Fourier space, therefore effectively injecting more energy
in 2D modes than in 3D modes. The other forcing functions
considered in the previous subsection inject either more energy
in 3D modes (RND) or energy only in a few 3D modes with no
2D injection (TG). Here we explore if anisotropic injection can
be responsible for the different scaling laws observed in the
e(k⊥,k‖ = 0) spectrum by means of numerical simulations in
which we control the anisotropy of the external forcing (runs
ANI in Table I).

It should be pointed out that what we call here “anisotropic
injection” for sake of brevity is actually a more subtle effect
associated with how much energy is directly injected in 2D
modes compared to that into the 3D modes. Indeed, TG forcing
is directionally anisotropic (in the sense that only a few modes
in a spherical shell are excited in Fourier space), but it shows
similar inverse cascade scaling as the RND runs, which have
no directional anisotropy.

The energy spectra e⊥(k⊥,k‖ = 0), E(k⊥), and E3D(k⊥)
at late times for runs ANI1, ANI3, and ANI4 are shown in
Fig. 6. The run ANI1 corresponds to a run with random forcing
with anisotropic exponent β = 1. Runs ANI3 and ANI4 have
β = 3, with zero and close to maximal helicity injection,
respectively (see Table I). The spectra of ANI2 behave as
ANI1 and are not shown.

The time evolution of e⊥(k⊥,k‖ = 0) and E(k⊥) for run
ANI3, up to 250τf turnover times at intervals of 35.7τf

turnover times, is shown in Fig. 7. A clear build-up of a ∼k
−5/3
⊥

spectrum can be observed in the runs with anisotropic forcing
irrespective of the amount of helicity in the flow.

C. Effect of varying forcing scale on energy spectra

It must be noted that the two distinct power law exponents of
the energy spectra mentioned in the previous sections pertain
to a forcing scale which is 1

40 -th the size of the box scale (i.e.,
kf = 40). In several convectively forced rotating flows [20],
a wide range of forcing scales are excited simultaneously. In
this section we show that exciting a wider range of forcing
scales does not have any bearing on the energy spectra at
least at the scale separations that can be accessed with the
spatial resolutions used in this work. Figure 8 shows the
energy spectrum for a run very similar to RND1 in Table I but
using a broader range of forcing wave numbers (kf = 37−43).
Moreover, to illustrate that the separation of the forcing scale
and the box scale has no measurable effect on the power law
of the energy spectra, another simulation was undertaken at a
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FIG. 6. Energy spectra at late times for runs ANI1 (top), ANI3
(middle), and ANI4 (bottom).

spatial resolution N = 384 forced at kf = 60 using a forcing
function identical to the one used in run RND1 in Table I. It
is observed that the scaling law of the 2D energy spectra does
not differ from that of run RND1. This is illustrated in Fig. 9. It
must be noted here that a run with spatial resolution N = 384
and forced at kf = 60 is more computationally expensive
and time intensive as there are more scales introduced in the
system. The plot shown in Fig. 9 is indicative of a tendency
towards a ∼k−3 spectrum even though the spectrum is not fully
developed.

036319-9



SEN, MININNI, ROSENBERG, AND POUQUET PHYSICAL REVIEW E 86, 036319 (2012)

10
0

10
1

10
2

10
−6

10
−4

10
−2

k
⊥

en
er

g
y

E(k
⊥
)

k
⊥
−5/3

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

k
⊥

en
er

g
y

e
⊥
(k

⊥
,k

||
=0)

k
⊥
−5/3
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D. Helicity at large scales

Figure 10 shows the helicity spectra H (k⊥) and h(k⊥,k‖ =
0) for the runs with helical forcing ABC and ANI4. There is
no significant large-scale growth of helicity, and the relative
helicity remains negligibly small at low wave numbers,
ρH (k) = H (k)/kE(k) → 0 for k → 0 (also ρH (k⊥) → 0 for
k⊥ → 0). This is consistent with the observation above that
helicity does not seem to affect the energy scaling in the inverse
cascade range, as has also been shown in previous studies of
helicity cascading to smaller scales in rotating flows [52].

E. Coupling and fluxes between slow and fast modes

How does the amount of energy injected into the 2D and the
3D modes affect the inverse cascade? Figure 11 shows the flux
�(k‖) for runs TG, ABC, ANI1, ANI2, and ANI3 specified in
Table I. In most runs, the flux is negative for small values of k‖
(indicating that energy goes from the 3D modes towards the
2D modes for larger scales), and positive for large values of
k‖ (indicating that energy goes away from the 2D modes for
smaller scales). Note that as more energy is injected into the
2D modes (e.g., as β is increased in the ANI runs), the wave
number at which the fluxes change sign moves towards k‖ = 0,
and for the ABC flow the flux �(k‖) is positive everywhere
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FIG. 8. Time evolution of the energy spectrum of the horizontal
kinetic energy, e⊥(k⊥,k‖ = 0), in run RND1 but with a wider forcing
scale corresponding to kf = 37 − 43 (top); same as above with initial
and final states of the 2D energy spectrum shown explicitly (bottom).

(i.e., energy goes from the 2D modes to the 3D modes at
all scales). As a reference, a schematic representation of the
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FIG. 9. Energy spectrum of the horizontal kinetic energy,
e⊥(k⊥,k‖ = 0), for a run with spatial resolution N = 384 and kf = 60
with a forcing mechanism identical to run RND1 in Table I. The
spectrum shown above corresponds to 595τf turnover times.
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excited modes in axisymmetric Fourier space (k⊥,k‖) is shown
in Fig. 12.

The above observations imply that the ABC flow corre-
sponds to the limiting case in which most of the energy is
injected into the 2D modes and as a result of the imbalance, an
excess of energy “leaks” from the 2D modes to the 3D modes.
This can be verified by computing each term in the energy
balance Eqs. (10) and (11) (see Tables II and III). The flux of
3D and 2D energy can be estimated from Eqs. (10) and (11) as
follows. Since all terms in these equations, with the exception
of �2D and �3D, are known, the equations can be rewritten as

�l.h.s
3D = �(k|| = 0,t) + ε3D − dtE3D (31)

and

�l.h.s
2D = −�(k|| = 0,t) + ε2D − dtE2D. (32)

The superscript “l.h.s.” here and in the table indicates that
the fluxes are obtained by solving for the l.h.s. of the balance
equations above. Another way of estimating �3D is based on
geometrical consideration of the fluxes in spectral space (see
Fig. 12):

�est
3D =

{
maxkf �k�kf +1{�(k,t)} if f = fABC

max∀k{�(k) − �(k⊥)} if f = fTG,fRND.
(33)
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FIG. 11. �(k‖) for runs TG, ABC, ANI1, ANI2, and ANI3 (top
to bottom).

Finally, an alternative interpretation of �3D is that it transfers
energy to the 3D modes with larger wave numbers where it is
eventually dissipated, and hence it balances the injection term
with dissipation of energy per unit of time. Hence, it can also
be approximated by 2ν

∫ kmax

0 k2E3D(k) dk. The two estimates
have been found to be of the same order of magnitude in all
the runs as shown in Table II. The fact that the three estimates
are positive and of the same order indicate that energy in the
3D modes does not only go to the slow manifold but goes to
smaller scales where it dissipates. The fact that �2D is negative
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excited by the different forcing functions, with 2fm indicating twice
the energy injected in that mode compared to the energy injected into
other modes. Directions of the arrows are based on the analysis of
data from Tables II and III and Figs. 2 and 4.

in the ABC run (see Table III) is evidence of an inverse cascade
of energy in the slow manifold once the energy from the 3D
modes is transferred to the 2D modes. For the other runs,
even though �2D is positive and small in magnitude, it merely
implies that more energy cascades to the smaller scales than to
the larger scales. It is important to note that the positiveness of
�2D hints at positive eddy viscosity and the possibility of the
inverse cascade of energy in the slow manifold cannot be ruled
out. In fact, the nature of the evolution of the e(k⊥,k|| = 0)
spectra over time, as shown in Fig. 2, is evidence of occurrence
of the inverse cascade of energy in the slow manifold. It may
also be worth pointing out that with increasing β (anisotropy),
�2D, for the ANI runs, become less positive and seems to
approach the nature of the energy cascade exhibited by the
ABC run (see Table III).

The picture that emerges for the fluxes from the values in
Tables II and III is illustrated schematically in Fig. 12. For

TABLE III. Amplitude of the terms in Eq. (11). The time
derivative dE2D/dt was obtained using centered finite differences,
ε2D is the power injected in the 2D modes, and �l.h.s.

2D is the flux of
energy in 2D modes estimated from Eq. (32).

Run dE2D/dt ε2D �l.h.s.
2D

TG 4.0 × 10−4 1.0 × 10−10 1.6 × 10−3

RND1 1.0 × 10−3 1.3 × 10−3 7.1 × 10−3

RND4 2.0 × 10−3 1.5 × 10−3 5.8 × 10−3

ANI1 1.0 × 10−3 1.1 × 10−3 5.3 × 10−3

ANI2 4.0 × 10−4 7.0 × 10−4 2.6 × 10−3

ANI3 7.0 × 10−5 5.0 × 10−4 1.1 × 10−3

ANI4 8.0 × 10−5 6.4 × 10−4 1.1 × 10−3

ABC 5.0 × 10−4 7.0 × 10−2 −1.3 × 10−2

isotropic forcing, a fraction of the energy injected into the 3D
modes is transferred to the slow manifold, and the remaining
3D energy is transferred to the 3D modes with larger wave
numbers.

Recently the authors of Ref. [43] did a detailed study of
energy transfers in forced rotating turbulence and concluded
that the former transfer, from the 3D to the 2D modes, is
nonlocal. The results in Ref. [43] (with simulations forced at
smaller wave numbers than in our case) are consistent with our
results, except that they attribute the development of the ∼k−3

spectrum in the 2D modes to a direct cascade of enstrophy
once the 3D modes inject energy directly into the 2D modes
with the smallest wave numbers. Although our analysis cannot
disprove this conjecture, the amplitude of the terms in Tables
II and III and the nature of the evolution of the 2D energy
spectra in Fig. 2 hints at a likely inverse transfer of energy in
the slow manifold.

For anisotropic and ABC forcing the picture changes.
As more energy is injected directly into the 2D modes by
the forcing, the flux of energy from the 2D to the 3D
modes, �(k‖ = 0) in Table II, increases (from larger negative
values to smaller negative values) and eventually reverses sign
becoming positive. In the ABC flow (and likely for other flows
with very high anisotropic forcing), the energy injected directly
into the 2D modes undergoes an inverse cascade in the slow
manifold, and later the excess of energy in these modes relative
to the 3D modes “leaks” energy into the 3D modes at large
scales (see Fig. 12). As the effect of the 3D modes over the 2D

TABLE II. Amplitude of the terms in Eq. (10). The time derivative dE3D/dt was obtained using centered finite differences from the data.
�(k‖ = 0) represents energy per unit of time transferred from 2D to 3D modes, and ε3D is the power injected in the 3D modes. �l.h.s.

3D is the
flux of energy in the 3D modes estimated from Eq. (31), �est.

3D is estimated from Eq. (33), and 2ν
∫

k2Z3D(k) dk is an estimation based on the
energy dissipation rate.

Run dE3D/dt �(k‖ = 0) ε3D �l.h.s.
3D �est.

3D 2ν
∫

k2E3D(k) dk

TG 1.0 × 10−4 −2.0 × 10−3 3.0 × 10−2 2.8 × 10−2 1.0 × 10−2 1.0 × 10−2

RND1 1.0 × 10−4 −6.8 × 10−3 4.6 × 10−2 3.9 × 10−2 2.0 × 10−2 2.0 × 10−2

RND4 4.0 × 10−5 −6.3 × 10−3 4.6 × 10−2 3.9 × 10−2 2.0 × 10−2 3.0 × 10−2

ANI1 1.0 × 10−4 −5.2 × 10−3 8.9 × 10−3 3.6 × 10−3 4.0 × 10−2 4.0 × 10−2

ANI2 1.0 × 10−4 −2.3 × 10−3 9.3 × 10−3 6.9 × 10−3 2.0 × 10−2 1.0 × 10−2

ANI3 1.0 × 10−4 −6.9 × 10−4 6.5 × 10−3 5.7 × 10−3 2.0 × 10−3 5.0 × 10−3

ANI4 3.0 × 10−5 −6.0 × 10−4 5.4 × 10−3 4.7 × 10−3 2.0 × 10−3 4.0 × 10−3

ABC −2.0 × 10−4 8.3 × 10−2 2.0 × 10−2 1.0 × 10−1 3.0 × 10−2 3.0 × 10−2
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modes is less relevant in these runs, the runs with either small
or positive �(k‖ = 0) display ∼k

−5/3
⊥ scaling.

It is also interesting to point out that the 2D and the 3D
modes are not necessarily decoupled, as can be seen, e.g., by
comparing the ratios �(k‖ = 0)/�l.h.s.

3D and �(k‖ = 0)/�l.h.s.
2D .

The relevant quantity for either a ∼k−3
⊥ or ∼k

−5/3
⊥ scaling in the

inverse cascade energy spectrum is �(k‖ = 0). Indeed, based
on the previous discussion, if little energy goes into the 2D
modes from the 3D modes, or if energy goes from the 2D
modes into the 3D modes with the 2D modes being the most
energetic and dominating the dynamics, we can assume that
the cascade in the slow manifold is dominated by the turnover
time τ⊥ ∼ l⊥/u⊥ (where l⊥ is a characteristic length in the
slow manifold and u⊥ the 2D r.m.s. velocity at that length).
With only one relevant time scale, KKBL phenomenology tells
us that the energy flux goes as

�2D ∼ u2
⊥

τ⊥
∼ u3

⊥
l⊥

, (34)

which results in a ∼k
−5/3
⊥ scaling law. On the other hand, if

energy goes from the 3D modes to the 2D modes, interactions
with the 3D modes cannot be neglected. Besides the slow
turnover time τ⊥, we have to consider now the 3D turnover
time and the time scale associated with the fast waves, τ� ∼ 1

�
.

There is no unique dimensional solution in this case but we
can borrow from the phenomenology developed by Kraichnan
[53] for magnetohydrodynamic (MHD) turbulence where the
effect of the waves modulates the dominant time scale of the
flow. This phenomenology has been successfully extended to
rotating flows [54,55], including in the helical case [6]. It states
that in the presence of waves, the nonlinear transfer is slowed
down because of the waves and the relevant parameter of the
problem is the Rossby number, i.e., the ratio of time scales of
the wave and the nonlinear turnover time. Thus, we can assume
that the flux will be slowed down by a factor proportional to
the ratio τ�/τ where τ is the relevant (and unknown) turnover
time for the problem

�2D ∼ u2
⊥
τ

τ�

τ
. (35)

It is interesting to point out that if the turnover time in the above
expression is built upon the velocity at the forcing scale Uf

as τ ∼ l⊥/Uf (i.e., assuming interactions are nonlocal in the
inverse cascade range and that most of the energy in the slow
manifold comes directly from the 3D forced modes, which
is consistent with the large and negative values of �(k‖ =
0) in some of the runs), Eq. (35) results in a ∼k−3

⊥ scaling
for the energy spectrum of the 2D modes. Note that such a
choice of the time scale is consistent with the nonlocal transfers
reported in Ref. [43], and that nonlocality of nonlinear transfer
in rotating turbulence in the direct cascade was also observed
in Ref. [50].

F. Large-scale shear

The transfer of large-scale energy from the 2D modes to
the 3D modes in the ABC run should have an impact in the
large-scale structures that develop as a result of the inverse
cascade. In this section, we show that large scales in the ABC
run have large shear, while in the other runs (in which energy
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FIG. 13. (Color online) Spectrum of the maximum eigenvalue of
the rate of strain tensor in horizontal planes, for different runs as a
function of time. The amplitudes of the spectra are normalized to
their initial values (when the rotation is turned on corresponding to
τf = 8). From top to bottom: TG, RND1, RND4, and ABC.
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is mostly transferred from the 3D to the 2D modes or cases
where the transfer is negligible) have much smaller shear at
large scales (see Fig.13). The development of large-scale shear
in the ABC run also introduces a new time scale for the 3D
modes τsh which is independent of the scale and therefore
consistent with the observed ∼k−1 scaling in the total energy
spectrum.

To study the effect of shear, we analyze the velocity gradient
tensor V defined as follows:

V := ∇u =

⎛
⎜⎝

∂xu ∂yu ∂zu

∂xv ∂yv ∂zv

∂xw ∂yw ∂zw

⎞
⎟⎠ . (36)

The velocity gradient tensor may be written as the sum of
the symmetric rate of strain tensor, S and the antisymmetric
rotation tensor, R, i.e., V = S + R. Note that S may also be
written as

S = 1
2 (V + Vᵀ). (37)

We analyze the spectrum of the maximum eigenvalue λmax

of the rate of strain tensor S in a horizontal plane for several
runs (in Fig. 13, note the amplitude of the spectra of λmax in
the figure is normalized by its initial value before rotation is
turned on). In most of the runs, shear decreases when rotation is
turned on, and the spectrum seems to reach a steady state (with
significantly less shear than the isotropic and homogeneous
turbulent flow) at late times. However, in the ABC run, shear
increases at large scales as time evolves (with a decrease in
shear at small scales). The increase in large-scale shear in this
run can be understood in the light of the previous discussion
and based on the fact that �(k‖ = 0) > 0. In the case of ABC
forcing, 2/3 of the energy injection corresponds to the 2D
modes, and the energy in the slow manifold undergoes an
inverse cascade. However, some of the large-scale energy
in the 2D modes is transferred back to the 3D modes (as is
evident from �(k‖ = 0) > 0) and the excitation of large-scale
3D modes in turn creates large-scale shear [note: ∂z(·) = 0 in
the slow manifold when k‖ = 0 but ∂z(·) �= 0 in the 3D modes].

It is interesting that once large-scale shear is present, a
new constant time scale (i.e., independent of length scale)
appears. Large-scale shear is associated with the shear
time scale, τsh := 1

max{λmax} , where λmax(x,y,z) is the largest
eigenvalue (in magnitude) of S at any given location (x,y,z).
Dimensional analysis then hints at a flatter energy spectrum,
and a k−1 energy spectrum (as observed for the total energy
in the ABC run) is not uncommon in shear dominated
flows [56].

V. CONCLUDING REMARKS

An attempt has been made to provide a coherent treatment
of the various large-scale physical processes involved in
rotating flows with a special emphasis on the breaking of
universality in the inverse cascade of energy for rotating
turbulence due to the anisotropy in the forcing.

We observe a ∼k−3
⊥ spectrum for the horizontal kinetic

energy in the 2D modes when the forcing is isotropic and the
observed spectrum can be associated with an inverse transfer
of energy. This spectrum has been reported before [14,43],
although it must be said that in Ref. [43], the observed k−3

⊥
spectrum is attributed to a direct enstrophy cascade, as is
thought to happen in the case of 2D Navier-Stokes turbulence
(see Ref. [23] and references therein).

We also find that in the case of strongly anisotropic forcing
such as the ABC, the inverse cascade for the 2D energy follows
a k

−5/3
⊥ spectral law, but the 3D energy follows a shallower law,

E(k) ∼ k−1 attributed to the creation of shear at large scales.
Of course, a k−1 spectrum is not unheard of in turbulence; it
arises for a field which is advected at a constant rate, e.g., for
a passive tracer in a turbulent flow, and it is also documented
in shear flows [57] (see also the recent review in Ref. [58]).
Although a recent analysis of atmospheric data indicates that
the energy cascade is forward at all scales (see Ref. [59] and
references therein), it should be noted that the k−3 and k−5/3

spectra are both observed.
There is no indication of inverse cascade for the helicity in

any of the runs. However, it is not clear what the origin is of
the rather flatter spectrum of the helicity at large scales (see
Fig. 10 and also Ref. [23], Fig. 3). It is consistent with the fact
that the relative helicity becomes negligible at large scales, so
this could be simply interpreted as eddy noise. This point will
have to be investigated further. Note that a k−1 scaling law,
which implies less energy at large scales, may be consistent
with toned down 3D nonlinear dynamics due to the strong
helicity in the flow.

Finally, it must be said that these results are obtained with
a subgrid-scale model and due to the nonlocal interactions
that seem to be present in the inverse cascade, the modeling
of the small scale may affect the behavior of the large
scales. This effect is perhaps of less consequence when
compared with models using an hyperviscous term with the
dissipation proportional to ∼k2αE(k). Indeed, in our LES
the computations of the eddy viscosity and eddy noise take
into account the energy and the helicity spectra up to 3kc,
where kc is the cutoff wave number. We would like to mention
that DNS of the flows presented in this paper are being per-
formed currently to substantiate the observations based on the
LES.
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