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Thinking in Probability

Figure 1.1: A portrait of
Shakuni’s game of dice
from the Indian epic
Mahabharata composed
in the third century
BCE. (courtesy: Wikime-
dia Commons).

Chance permeates our physical and mental universe. While the role of chance in human
lives has had a longer history, starting with the more authoritative influence of the nobil-
ity, the more rationally sound theory of probability and statistics has come into practice in
diverse areas of science and engineering starting from the early to mid-twentieth century.1
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Practical applications of statistical theories proliferated to such an extent in the previous
century that the American government-sponsored RAND corporation published a six hun-
dred page book that wholly consisted of a random number table and a table of standard
normal deviates.2 One of the primary objectives of this book was to enable a computer sim-

2 A Million Random Digits
with 100,000 Normal Deviates,
RAND corporation, 2001.
(Originally published in
1955).

ulated approximate solution of an exact but unsolvable problem by a procedure known as
the Monte Carlo method devised by Fermi, von Neumann, and Ulam in the 1930-40s.3

3 Randomness and the Twentieth
Century by Alfred M. Bock,
The Antioch Review, 27 (1),
pp. 40-61, 1967.

Figure 1.2: Schemata
of a randomized control
trial for evaluating the
efficacy of a treatment
intervention by a new
drug launched in the
market.

Statistical methods are the mainstay of conducting modern scientific experiments. One
such experimental paradigm is known as a randomized control trial that is widely used in a
variety of fields like psychology, drug verification, testing efficacy of vaccines, agricultural
sciences, demography, etc. These statistical experiments require sophisticated sampling
techniques in order to nullify experimental biases. With the explosion of information in the
modern era, the need to develop advanced and accurate predictive capabilities have grown
manifold. This has led to the emergence of modern artificial intelligence (AI) technologies.
Further, climate change has become a reality of the modern civilization. Accurate prediction
of weather and climatic patterns relies on sophisticated AI and statistical techniques. It is
impossible to think of a modern economy and social life without the influence and role of
chance, and hence without the influence of technological interventions based on statistical
principles. We must begin this journey by learning the foundational tenets of probability
and statistics.

1.1 Chapter objectives

The chapter objectives are listed as follows.

1. Students will learn the fundamental axioms of probability.

2. Students will apply elementary principles of probability, permutation, and combination to
solve simple numerical examples.

3. Students will learn the meaning of random variables and formulate solutions to problems
involving random events.
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4. Students will learn to apply the Bayes’ theorem and the law of total probability to solve
complex problems.

5. Students will learn to calculate statistical averages in terms of expectation of random
variables.

6. Students will learn to use the techniques of computing probability and expectation of
random events to solve a practical simulation project on one dimensional random walk.

1.2 Chapter project: Random walk on a lonely island

1.2.1 Prologue: Will Squeaky drift off to the edge and fall off the cliff or keep hopping back and
forth forever?

Figure 1.3: Squeaky
is trapped in a lonely
island hill with sharp
cliffs on both sides.

Our friend Squeaky is trapped somewhere in the middle of a lonely island hill with
sharp cliffs on both sides. Squeaky is excited and jumps around in her merry way. At any
given instance, she makes a decision to hop to the left or to the right independent of her
past moves. Squeaky is unaware of the impending danger.

In this project, we will use calculations based on the principles of conditional proba-
bility, the law of total probability, and the law of total expectation to predict her fate. In
other words, what are the odds that she will bounce around on the island hill, her left-
sided moves balancing out her right-sided moves on an average, and never actually trip
and fall off on either side? Or will chance play the devil’s role and will she eventually
drift off to one side and perish? And if the latter turns out to be true, then what is her
life expectancy in terms of the total number of hops starting from her first move? Does a
certain initial position on the hill give her the best chance to survive the longest?

In addition to our theoretical calculations, we will also build a computer simulation of
her actions to corroborate our result. For convenience, we shall assume that the island is
one dimensional, i.e. Squeaky’s movements are restricted exclusively to lateral directions
(left or right). While we build the computer-simulated solution, we will learn to apply a
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random number generator using a computer software in order to mimic Squeaky’s mental
choices to hop either to the left or to the right independent of her past moves.

1.3 Deterministic vs probabilistic outcomes

1.3.1 Deterministic outcomes

Permutations:

Consider an assortment of five differently colored buttons. A simple question may be to
find out all the different ways in which we may be able to arrange the five buttons without
piling them on top of each other.

Figure 1.4: Number
of different permu-
tations of five dif-
ferently colored but-
tons is 5! i.e., there are
5× 4× 3× 2× 1 = 120
different ways of ar-
ranging these five but-
tons.

This is a classic example of the number of permutations of n distinct things. If we consider
five empty slots in which to host the individual buttons, and if we begin with the leftmost
slot; then this slot may be occupied by any of the five buttons. So depending on the color
we choose, there are five different ways of filling the leftmost slot. Subsequently, we are left
with four differently colored buttons, and hence the second slot can be filled in four different
ways. This is followed by the third slot which can be occupied in three distinct manners. The
penultimate and the ultimate slot can be filled in two and one different ways respectively.
Therefore, the number of permutations of n different things is n! = n× (n− 1)× · · · × 2× 1.

However, if there are r different types of n = n1 + n2 + · · · + nr objects; then there are
n!

n1!n2!n3!...nr ! different ways of arranging them. Here, the ith type has ni counts, i = 1, 2, 3, ..., r.

e.g., if we have nine buttons of which three are of red color, four are of green color,
and two are of blue color; then there are 9!

3!4!2! = 1260 ways of arranging them.

Alternatively, we may have n different things and we may want to know the number of
permutations by taking only r ≤ n of them at a time. The number of possible ways are

Pn
r = n× (n− 1)× (n− 2)× · · · × (n− r + 1) =

n!
(n− r)!

.

e.g., let us say there are nine slots and four differently colored buttons. There are 9!
5! =

3024 ways of arranging them.

Combinations:

In many other situations, the order of arrangement is not so important. In such cases, we
may only care about the number of subsets of r items from amongst a total of n items. The
number of ways n things can be combined by taking r at a time is given by the formula

Cn
r =

(
n
r

)
=

n!
r!(n− r)!

.

e.g., if there are nine slots and four identically colored buttons which can be placed in

any of these slots; then there are (9
4) = 126 different designs/patterns that can emerge

upon hosting any five buttons in the nine slots. Obviously, Cn
r < Pn

r when r > 1.
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1.3.2 Probabilistic outcomes

Most importantly, permutations and combinations belong to a class of experiments that
have deterministic outcomes. There are a finite and fixed number of ways of arranging or
collecting (combining) items. None of the aforementioned examples have a chance outcome.
However, we may have to perform experiments whereby the outcome is not certain, at least
not in the a priori sense. e.g., we may ask that in any given arrangement of the five distinctly
colored buttons in the five available slots, what is the probability that the first slot is filled by
a red color button? Implicit in this question is the fact that this particular arrangement of the
five buttons is made blindfolded (without the person actually making a conscious decision
of placing the red button in the first slot). Under such circumstances, the placement of the
red button in the first slot is a matter of chance. The probability of such an outcome is 1/5
because only one out of the possible five differently colored buttons that could have been
placed in the first slot is red. We shall devote the rest of this book to the study of random
events and statistical experiments that have a probabilistic outcome.

1.3.3 A note of caution

Statistical forecasts depend on good and reliable data. Biases in data can skew statistical
predictions hugely as is often noticed in faulty exit poll results. In order to address these
biases, statisticians are often concerned with appropriate design of their experiments.

Moreover, statistical inferences are based on the principles of probability (chance). They
explain what outcome is likely to happen. However, in order to understand the rationale be-
hind a particular outcome or the underlying principles responsible for a certain observation,
one has to rely on physical theories that fall outside the scope of statistical techniques. Statis-
tical theories shed light on idealized averages4 of stochastic phenomena. Thus, the reach of 4 Here the word averages is

used in a broader sense of all
statistical moments and not
just the mean value.

statistical inferences may be far removed from individual experiences. A distinctive dimen-
sion of reality is its individual aspect which may not be gleaned from statistical approaches.5

5 cf. pg. 5 of The Undiscovered
Self by Carl Gustav Jung,
Routledge Classics, 2021

(Reprint of the 1958 edition).
1.4 Foundations of probability

1.4.1 Definition: Probability

It is the measure of likelihood that an event will occur. e.g., We may ask: what are the
chances that it will rain today? Most weather prediction websites may give us an answer
in terms of a probability measure, 75% (say).

1.4.2 Definition: Statistics

It is the branch of mathematics that deals with the collection (sampling), organization, anal-
ysis and interpretation of data including making inferences and forecasts. It relies on the
principles of probability.

1.4.3 Definition: Probability space

A probability space comprises a triple (Ω,F, P). Here Ω denotes the sample space which is
the set of all possible outcomes,6 F denotes the σ-algebra that is a collection of all events of 6 An outcome is the result of

a single realization of the
model experiment.
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concern to us in a certain statistical experiment and is generated by Ω, and P is the probabil-
ity measure defined as a function P : F→ [0, 1]. We may think of F as an event space.

e.g., for the coin tossing experiment illustrated in Figure 1.5, the σ-algebra generated
by Ω2 = {HH, HT, TH, TT} can be taken as the power set of Ω2,

F = 2Ω2 =

{
{}, {HH}, {TT}, {HT}, ..., {HT, TT}, ..., {HH, HT, TH, TT}

}
.

The cardinality of F is 2|Ω2| = 24 = 16. The σ-algebra defined above is the largest such

set. The smallest σ-algebra over Ω2 is
{
{}, {HH, HT, TH, TT}

}
The probability of

observing two successive heads is 1/4.

Figure 1.5: The out-
come of a toss of a fair
coin is heads or tails.
Therefore, Ω1 = {H, T}
with the usual abbrevi-
ations for heads and
tails. We may con-
duct an experiment
whence we toss the
coin twice whence Ω2

= {HH, HT, TH, TT}.

It may be useful to state here that if we have disjoint sets (events) E1, E2, ... ∈ F, then
∪iEi ∈ F. A rigorous treatment of σ-algebra will be avoided in this introductory level text,
wherever necessary we will loosely refer to the notion of an event space.

1.4.4 Axioms of probability

We begin this short section by asking: why do we need axioms at all? In fact, the first founda-
tional axioms of mathematics appeared only as recent as 1879, courtesy Gottlob Frege.7 Ax-

7 https://iep.utm.edu/

frege/

ioms may be regarded as a priori propositions whose veracity is accepted universally without
requiring their validation by demonstration. The utility of axioms lies in the fact that they
enable the deduction of realizable experiences that can be supported by sense perceptions.8,9

8 Russell’s mathematical
logic by Kurt Gödel (1944),
Benacerraf and Putnam, pp.
447-469, 1983.
9 The Role of Axioms in Math-
ematics by Kenny Easwaran,
Erkenn (Springer), 68, pp.381-
391, 2008.

Figure 1.6: Russian
Mathematician A. N.
Kolmogorov (courtesy:
Wikimedia Commons).

The axioms of probability were formulated by Andrey N. Kolmogorov in 1933.

1. P(E) ≥ 0, for all E ∈ F (non-negativity),

2. P(Ω) = 1 (unitarity), and

3. P(
⋃∞

i=1 Ei) = ∑∞
i=1 P(Ei) for a countable sequence of disjoint events E1, E2, ...

(σ-additivity).

1.4.5 Supplementary properties of probability measure

In addition to the axioms of probability listed above, it is often helpful to consider the fol-
lowing properties of P while performing calculations.

1. Consider E1, E2 ∈ F, then P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2). This result may be
generalised to n events E1, E2, E3, ..., En by induction. This result is known as the principle
of inclusion-exclusion.

2. If E1 and E2 are independent events, then P(E1 ∩ E2) = P(E1)P(E2).

3. If Ac stands for the complementary event of A, then P(Ac) = 1− P(A).

4. The probability of the impossible event is zero, i.e. P({}) = 0.

5. A distinction must be made between mutually exclusive (disjoint) events and independent
events. E1 and E2 are mutually exclusive when E1 ∩ E2 = {}. In such a case, P(E1 ∩ E2) =

https://iep.utm.edu/frege/
https://iep.utm.edu/frege/
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P({}) = 0, and P(E1|E2) = 0. On the other hand, if two events A1 and A2 are indepen-
dent, then P(A1 ∩ A2) = P(A1)P(A2), and P(A1|A2) = P(A1). In essence, two events are
mutually exclusive if they cannot happen concurrently; whereas two independent events
may happen concurrently but the outcome of one does not influence the outcome of the
other.10 10 The prevailing weather

pattern in a given locality
may be either sunny or
rainy because these are
mutually exclusive weather
events in commonly used
terminology. The outcomes of
tossing a fair coin twice are
independent events.

The symbols ∩ and ∪ denote overlapping and union of events, respectively (cf. Figure 1.7).

Figure 1.7: Venn dia-
gram showing overlap-
ping events and union
of events

1.4.6 Example: Defining events in probability space

Two dice are thrown. Let E be the event that the sum of the dice is odd, let F be the
event that the first die lands on 1, and let G be the event that the sum is 5. Describe
the events EF, E ∪ F, FG, EFc, EFG.

Solution: EF = {(1, 2), (1, 4), (1, 6)}
E ∪ F = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6) or any of the 15 possibilities where the
first die is not 1 and the second die is odd when the first is even and even when the
first is odd.}
FG = {(1, 4)}
EFc = { any of the 15 possible outcomes where the first die is not 1 and the two dice
are not either both even or both odd}
EFG = FG.

1.4.7 Example: Rolling two dice concurrently

Consider an experiment comprising throws of two independent dice. The sample set
is the Cartesian product comprising ordered pairs,

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6} = {(1, 1), (1, 2), ..., (2, 1), (2, 2), ..., (6, 5), (6, 6)}.

We may be interested in knowing the odds that the sum of the outcomes from each
die is greater than equal to ten. In this case, the event space is

E = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)}

and hence, the required probability is |E||Ω| =
6

36 .

1.4.8 Example: Probability of a complementary event

A, B and C are 3 mutually exclusive and exhaustive event of a random experiment
such that P(B) = 3

2 P(A) and P(C) = 1
2 P(B). What is probability of non-occurrence of

event A.
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Solution: P(C) = 1
2 ×

3
2 P(A) = 3

4 P(A).

P(A) + P(B) + P(C) = 1.

P(A) +
3
2

P(A) +
3
4

P(A) = 1.

P(A)

(
1 +

3
2
+

3
4

)
= 1.

P(A) =
4
13

.

P(Ac) = 1− 4
13

=
9

13
.

1.4.9 Example: Probabilities of composite events originating from rolling two dice.

If 2 dice are thrown, what is the probability that sum is a) greater than 9, b) neither 7

nor 11.

Solution: The cardinality of the sample space, n(Ω) ≡ |Ω| = 36.
Let Si be the event when the sum of the outcomes of the two dice equal i.
a) P(sum is greater than 9) = P(S10) + P(S11) + P(S12)

=
3

36
+

2
36

+
1

36

=
1
6

b)
Event A ≡ S7 P(A) = 1

6 .
Event B ≡ S11 P(B) = 1

18 .
P (Ac ∩ Bc) = P(Ω)− P(A ∪ B)

= 1− (P(A) + P(B))

= 1−
(

1
6
+

1
18

)
=

7
9

.

1.5 Random variable

Consider a probability space (Ω,F, P). A random variable11 is a measurable function, X : Ω → 11 Notation: By convention, a
random variable is denoted
by an uppercase letter such as
X.

R, that maps each outcome in the sample space to a real number, i.e.

{ω ∈ Ω; X(ω) ≤ x} ∈ F, x ∈ R.

A random variable may be discrete or continuous depending on whether it takes on dis-
crete values or a continuum of values. Next, we will discuss some concrete examples.
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1.5.1 Example: coin tossing experiments

Consider a simple experiment of tossing a fair coin. Ω1 = {H, T}. X(H) = 1, X(T) =

0 is a re-labelling of every outcome in Ω1 to a measurable space (often taken as R).
In the case of an experiment where we toss the coin twice, the outcomes are extracted
from Ω2 = {HH, HT, TH, TT}. We may wish to know the number of heads observed
in a given realization. Therefore, X(HH) = 2, X(HT) = 1, X(TH) = 1, X(TT) = 0.

1.5.2 Example: Indicator random variable

Often, in calculations, it is convenient to define an indicator random variable12 as follows

1A(ω) ≡ I{ω∈A} =

1; ω ∈ A

0; ω ̸∈ A
(1.1)

12 It is also known as Bernoulli random variable.

In the second experiment described above where we toss a fair coin twice, we may be in-
terested in an outcome where we observe at least one head. We may define A = {HH, HT, TH}
and use the indicator random variable to represent the events where we observe at least one
head. In the latter section of this chapter, we will use the indicator random variable to solve
a problem encountered by a hiring manager of a company.

1.5.3 Example: Defining random variables for events

Consider an fair coin being tossed thrice. Consider the number of heads obtained after
three tosses. Find the sample space, and therefore define a random variable. Also find
the probabilities associated for each value of the random variable.

Solution: Sample space, Ω = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}.
Let X be the number of heads obtained after three tosses.

X(ω) =



3, if ω ∈ {HHH}
2, if ω ∈ {HHT, HTH, THH}
1, if ω ∈ {HTT, THT, TTH}
0, if ω ∈ {TTT}

P(X = 0) =
1
8

, P(X = 1) =
3
8

, P(X = 2) =
3
8

, P(X = 3) =
1
8

.

1.5.4 Example: Defining an indicator random variable for a stochastic event

Consider an unbiased die being rolled once, where the outcome of interest is one
where there is prime number. Find the sample space, the collection of events we are
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interested in and therefore define an indicator random variable to represent when a
prime number appears. Also find the probabilities associated for each value of the
random variable.

Solution: Sample space, Ω = {{1}, {2}, {3}, {4}, {5}, {6}}
Let A = {{2}, {3}, {5}}
Then, the indicator random variable is

1A(ω) =

{
1; if ω ∈ {{2}, {3}, {5}}
0; if ω ∈ {{1}, {4}, {6}}

P(X = 0) =
3
6
=

1
2

, P(X = 1) =
3
6
=

1
2

.

The examples discussed above are discrete type random variables. Some examples of
continuous random variables are listed below.13 13 We will discuss different

types of discrete and contin-
uous random variables (and
their probability distributions)
in more detail in the next
chapter.

1. Time duration between successive arrivals of buses in a station (this random time
interval follows an exponential distribution).

2. Distribution of wealth in a society follows a Pareto distribution unraveling the fact
that a high proportion of wealth is held by a small fraction of people in a society.

3. Scores obtained by students in an engineering class may follow a bell-shaped curve
(see Figure 1.8), etc.

Figure 1.8: Scores ob-
tained by students in
a class may follow a
Gaussian distribution.
The scores can take on
a continuum of val-
ues between the lowest
score and the highest
score.

1.6 Conditional probability

Occurrence of certain events may depend on the occurrence of other events. In fact, their
likelihood of happening may be boosted (or diminished) by the outcomes of the preceding
events. e.g., the chances of rain are certainly higher on a cloudy day than on a day with
clear skies. In this simple example, knowledge of the prevailing weather (cloudy/sunny) can
greatly enhance our ability to predict the chances of rain. This underscores the importance
of calculating conditional probability where we may want to know the chance of occurrence of
a certain event conditioned upon our knowledge of a preceding event.

Figure 1.9: Likelihood
of occurrence of an
event (rain) may de-
pend on another event
(sunny/cloudy).

Consider two events A and B. The conditional probability of event A given the occurrence
of event B is given by the following relation.

P(A|B) = P(A ∩ B)
P(B)

. (1.2)

If A and B are independent events, then P(A ∩ B) = P(A)P(B) =⇒ P(A|B) = P(A). Let
us understand this concept by considering another simple example.

Let A be the event that we make the following observation on two successive tosses
of a fair coin: "heads" followed by "tails". Let B be the event that in any two succes-
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sive tosses of a fair coin, the outcome of the first toss is "heads". Let us evaluate the
conditional probability P(A|B) using two different approaches.

1. Method 1: Given the knowledge of the event B, the only possible way that the event
A can happen is if the outcome of the second event turns out to be "tails".

Therefore, P(A|B) = Prob(second toss turns up as "tails") =
1
2

.

2. Method 2: An alternative approach would be to use the formula (1.2).

P(A|B) = P(A ∩ B)
P(B)

=
1/2× 1/2

1/2
=

1
2

.

Here, it is essential to explain the calculation of P(A ∩ B). First, we shall analyze
the meaning of the event A ∩ B. A ∩ B stands for the event which is common to
both A and B, i.e. it is that special event when each of event A and event B are
guaranteed to have happened. A little introspection may reveal that this event must
be the appearance of "heads" in the first toss and "tails" in the second toss which
happens with a probability 1/2× 1/2 = 1/4.14

14 It may help to reflect if the event B may be a candidate for the event A ∩ B. It turns out that the occur-
rence of event B does not guarantee the event A as there is a possibility that the second toss may turn out to
be "heads". You may proceed by a careful elimination process to comprehend the special event A ∩ B.

Figure 1.10: Here, the
sample space Ω is parti-
tioned into E1, E2, ..., E5

in order to facilitate
the computation of the
probability of the event
A in terms of the condi-
tional probabilities.

Example: Simple concurrent events

Suppose that a bag contains 6 pink balls and 2 grey balls and we draw 2 balls ran-
domly from the bag without replacement. If at each draw, each ball in the bag is
equally likely to be drawn, what is the probability that both balls that are drawn are
pink.

Solution: Let R1p be the event that first ball drawn is pink and let R2p be the event
that second ball drawn is pink.
P
(

R1p
)
= 6

8 . Given that the first ball selected is pink, there remains 5 pink balls and 2

grey balls. Therefore, P
(

R2p | R1p
)
= 5

7 .

P
(

R1p ∩ R2p
)
= P

(
R1p
)

P
(

R2p|R1p
)
=

6
8
× 5

7
=

30
56

=
15
28

.

Example: Estimating chance of a defect in a supply line

A box contain 2000 components of which 5% are defective, second box contain 500

components of which 40% are defective, 2 other boxes contains 1000 components each
with 10% defective components. We select at random, one of the boxes and remove a
single component from it. What a the probability that the component is defective.
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Solution: Let Bi be the event that denotes the selection of the ith box and let A be the
event that the selected component is defective. Then the required probability is P(A).

P(A) = P (A ∩ B1) + P (A ∩ B2) + P (A ∩ B3) + P (A ∩ B4)

= P (B1) P (A | B1) + P (B2) P (A | B2) + P (B3) P (A | B3) + P (B4) P (A | B4)

=
1
4
× 5

100
+

1
4
× 40

100
+

1
4
× 10

100
+

1
4
× 10

100

=
65
400

P(A) =
13
80

.

1.6.1 Law of total probability

The sample space Ω may be partitioned into k disjoint sets (events), namely Ei where i =

1, 2, ..., k. The probability of a certain event A ⊂ Ω can then be computed by the weighted
sum of the conditional probabilities, P(A|Ei), where the weights are given by the probability
of the partitioning events P(Ei). This is the law of total probability, stated succinctly as follows.

P(A) =
k

∑
i=1

P(A|Ei)P(Ei). (1.3)

1.6.2 Bayes’ theorem

Bayes’ theorem helps us to compute posterior probability P(A|B) by using the concepts of
conditional probability and the law of total probability as follows.

P(A|B) = P(B|A)P(A)

P(B)
. (1.4)

P(A) and P(B) are known as prior probabilities. The prior probabilities may be computed
using the law of total probability. The formula in equation 1.4 can be deduced by using the
definition of conditional probability: P(A|B) = P(A∩B)

P(B) = P(B∩A)
P(B) = P(B|A)P(A)

P(B) .

Bayesian statistics is a model for capturing epistemological uncertainty within the frame-
work of probability. The prior probabilities constitute our original belief sets which are con-
ditioned (over time) by the diversity of our experiences (data) and manifest as posterior
probabilities. These posterior probabilities constitute our refined and conditioned beliefs that
form the basis of inferential decisions.15 Let us understand the essence of this framework 15 To put this in context of our

formalism, P(A) constitutes
our original belief sets, and
the posterior probabilities
P(A|B) are the updated
beliefs that are attained by
the process of conditioning
over experiences and data
(represented here by the
event(s) B). This update is
made possible through the
likelihood model P(B|A).
Note: A detailed discussion
on the likelihood function,
used in estimation theory, is
beyond the scope of this text.

through a simple example.

1.6.3 Example: Bayes’ theorem and law of total probability

A factory unit uses three automatic bolt threading machines (rollers), each accounting
for 20%, 30%, and 50% of the factory output of ready-to-use bolts for the aerospace
industry. The precision rating (number of non-defective parts produced per one hun-
dred) of each of the rollers is 95%, 97%, and 99% respectively. If a part is picked up
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at random from the production line and found to be defective, what is the probability
that it was produced by the second machine?

Solution: Let us begin by defining the relevant events: Ai is the event that a ran-
domly picked bolt is manufactured by the ith machine, i = 1, 2, 3; B is the event that
a randomly chosen part is defective. Based on the information provided, we glean
that the prior probabilities are P(A1) = 0.2, P(A2) = 0.3, P(A3) = 0.5. Further,
P(B|A1) = 0.05, P(B|A2) = 0.03, P(B|A3) = 0.01. We are asked to find P(A2|B).
Using Bayes’ theorem,

P(A2|B) =
P(B|A2)P(A2)

P(B)
=

(0.03)(0.3)

∑3
i=1 P(B|Ai)P(Ai)

=
0.009

(0.05)(0.2) + (0.03)(0.3) + (0.01)(0.5)

=
9
24

= 0.3750 (1.5)

Figure 1.11: A quality
control engineer who
understands the nu-
ances of Bayesian statis-
tics and its implications.

Albeit, as a toy example above, we have considered the case of a small factory that has
only three operational rolling machines. In a more realistic setting, we may expect that the
factory quality control engineer may have to deal with a large pool of machines producing
bolts en masse. Her prior belief set may hint to her that there is a 30% chance this defective
bolt came from the second machine because the second machine has a production rate of
30% of the total output. However, the extra information gleaned from randomly picking a
part and noticing it to be defective has led to an update in her belief system that is mani-
fested in terms of the posterior probability P(A2|B) = 0.375. The update from 30% to 37.5%
is a significant change of 25% that is likely to draw a greater attention of the engineer to
the operational fitness of the second machine. Bayesian inference, thus, enables an enhance-
ment of predictive knowledge of a phenomenon by synthesizing information and data from
experiences.

1.6.4 Example: Diagnosis of disease

The chance a doctor D will diagnose a disease X correctly is 60%. The chance that
a patient will die by his treatment after correct diagnosis is 40%, and the chance of
death by wrong diagnosis is 70%. A patient of doctor D who had disease X died.
What is the chance that his disease was diagnosed correctly?

Solution: Let B1 be the event that disease X is diagnosed correctly by doctor D.
Let B2 be the event that disease X is not diagnosed correctly by doctor D.
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Let A be the event that patient dies who had disease X.

P (B1 | A) =
P (B1) P (A | B1)

P (B1) P (A | B1) + P (B2) P (A | B2)

=
60

100 ×
40

100
60

100 ×
40

100 + 40
100 ×

70
100

=
24

24 + 28

=
6

13
.

1.6.5 Example: Academic leadership and curriculum matters

In late 2022, there are three candidates for the position of director at a University. Mr.
X, Mr. Y and Mr. Z have chances of getting appointed to the post in the ratio 4 : 2 : 3.
If Mr. X is selected, he could introduce a new syllabus in the university with a prob-
ability 0.3. The probabilities for Mr. Y and Mr. Z doing the same, if selected, are 0.5
and 0.8, respectively.

1. What is the probability that there will be a new syllabus in 2023?

2. If there is a new syllabus in 2023, what is the probability that Mr. Z is the newly
appointed director?

Solution: Let A be the event that a new syllabus is introduced in 2023.
Let X, Y and Z be the event that Mr. X, Mr. Y and Mr. Z is the director respectively.

1.

P(A) = P(X)P(A | X) + P(Y)P(A | Y) + P(Z)P(A | Z)

=
4
9
× 0.3 +

2
9
× 0.5 +

3
9
× 0.8

=
12 + 10 + 24

90

=
46
90

=
23
45

.

2.

P(Z | A) =
P(Z)P(A | Z)

P(A)

=
3
9 × 0.8

46
90

=
24
46

=
12
23

.
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1.7 Chapter project: Random walk on a lonely island

1.7.1 Interlude: Analytical calculations and computer simulations to predict the fate of Squeaky

Figure 1.12: Schematic
portrait of Squeaky’s
hopping adventure on
the one dimensional
island hill. At any given
instance, she jumps to
the left with probability
1/2 and jumps to the
right with probability
1/2.

Consider the schematic diagram of Squeaky’s hopping adventure on the one dimen-
sional island hill as shown in Figure 1.12. In order to make the calculations tractable, we
may consider dividing the island into discrete grid points that can host Squeaky. The grid
points run from location 0 to location n. At a certain time, let us consider that Squeaky is
at location m and she makes a choice to jump to her left to location (m + 1) with probabil-
ity q = 0.5 and to jump to her right with probability p = 0.5. The probabilities p and q
are assigned the value 0.5 because we have assumed that she does not have any inherent
bias or preference in choosing between left and right-sided moves. In this example, we
will take her decision instances to jump either to the left or right as the time stamps, i.e.
in any given time point so defined, she does not decide to stay where she is.

Before we attempt the theoretical calculations to predict her fate, let us consider the
case phenomenologically with the help of a spanning diagram as shown in Figure 1.13.
Since it is quite obvious from this diagram that the decision paths span the entire breadth
of the one-dimensional island, our hunch is Squeaky will make it all the way to the edge
and trip. Let us see if the calculations below validate our intuition.

Figure 1.13: Spanning
tree showing the possi-
ble decision paths that
Squeaky could opt for
starting from the loca-
tion m.

Let us define the following events. W is the event that Squeaky falls in the pit to our
left. We would like to compute the following probability.

Pm = Pm(left pit) = Probability of the event W when Squeaky starts at X0 = m, (1.6)

with P0 = 1, Pn = 0 for obvious reasons. Further, let E be the event that the first hop is to
the left. We will use the law of total probability and condition our computation upon this
event as follows:
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Pm =

E & Ec partition the choice space

P(W and E|X0 = m) + P(W and Ec|X0 = m)

=

law of total probability

P(W|E and X0 = m)P(E|X0 = m)

+ P(W|Ec and X0 = m)P(Ec|X0 = m)

= P(W|X1 = m− 1)× 1
2
+ P(W|X1 = m + 1)× 1

2

=

independent hops

1
2

P(W|X0 = m− 1) +
1
2

P(W|X0 = m + 1)

Pm =
1
2

Pm−1 +
1
2

Pm+1. (1.7)

Equation 1.7 is a recurrence relation whose solution can be readily computed.

Questions:

1. Solve the recurrence relation 1.7 for Pm = Pm(left pit).

2. Use an argument based on symmetry to deduce the solution for P′m = Pm(right pit).

3. Compute Pm + P′m and thereafter comment on the fate of Squeaky based on your theo-
retical calculations.

4. Build a computer simulation of Squeaky’s exploration on the island hill and comment
whether the results of the simulation corroborate with your theoretical calculations
about Squeaky’s fate. In order to develop the simulation, you may refer to the pseudo-
code provided below and turn it into a computer executable code using a programming
language of your choice.
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Software Implementation

Pseudocode of the random walk algorithm:

INPUT: grid_length, start_pos.

initialise curr_pos = start_pos;

initialise num_hops = 1;

while (curr_pos > 0 && curr_pos < grid_length)

toss = rand(1);

if (toss < 0.5)

curr_pos = curr_pos - 1;

elseif (toss >= 0.5)

curr_pos = curr_pos + 1;

end

plot curr_pos and record graphic frame;

num_hops = num_hops + 1;

end

OUTPUT: num_hops, play recorded animation.

In case you prefer to use Matlab, some useful commands to build your code may be:
rand, stem, getframe, movie.

We will return to the random walk expedition, undertaken by Squeaky, later in this
chapter. Let us now get introduced to some new concepts on computing statistical aver-
ages.

1.8 Expected values of random variables

The most common entity of interest while conducting an experiment is perhaps its average
output. Since we are largely interested in statistical experiments, we may expect the aver-
age output in terms of a statistical average due to the random or stochastic nature of the
underlying process/model. What this means is the following: if we were to repeat the same ex-
periment many times over, each time recording the output of the model (or process), and subsequently
take the average of all the recorded outputs; then, this ensemble average may be regarded as the mean
behavior of the experimental model (or process).

Figure 1.14: Let’s flip
some coins or do some
math? Oh well, the law
of large numbers will
prevail!

e.g., Consider the case when we toss a fair coin. We may ask what the expected out-
come is. In other words, if we toss the coin many times over, what is the mean out-
come? Let us define the Bernoulli random variable associated with this experiment as
has been suggested earlier: X(H) = 1 and X(T) = 0, each has a chance of 0.5 as an
outcome of any given toss. We may compute the simple average of all the outcomes,
i.e. if we tossed the coin a 100 times and if sixty two of those were heads, then the av-
erage is 62/100 = 0.62. This would be perfectly fine as an estimate of average output
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(or average behavior) if we had a lot of data (of the outcomes of the tosses). This may
not be always readily available. In such a scenario, we may consider the weighted sum
of all the possible outcomes (in this case 1 and 0), where the weights are the respective
probabilities of individual outcomes (Prob(heads) = Prob(tails) = 0.5). So the expected
value of this experiment is given by E(X) = 1

2 × 1 + 1
2 × 0 = 0.5.

In fact, had we conducted our coin tossing experiment many more times than one hun-
dred (as was done above), then the average would be observed to converge to the value 0.5
with the increasing number of tosses. As a matter of fact, we have just stated a very impor-
tant result of probability theory known as the law of large numbers.16 We will revisit this law 16 There are two variants of

this law, viz., the weak law of
large numbers and the strong
law of large numbers depend-
ing on the nature of conver-
gence of the sample mean to
the expected value.

in greater detail in the next chapter after we introduce the notion of probability distribu-
tions.

It is also essential to state that the expected value of a statistical experiment may take on
a value that is not equal to the elements of the range of the random variable. In the above
example, X takes on values 0 and 1 but E(X) = 0.5 which does not belong to the range of
X. This observation must be noted in conjunction with our comment earlier in section 1.3.3
that statistics deals with idealized averages that are far removed from individual experiences
(outcomes).

The expected value of a random variable may thus be generalized as follows.

µX = E(X) = ∑
x ∈ range(X)

xP(X = x). (1.8)

When it is understood, we will simply write µ and omit the subscript used to denote the
relevant random variable. The formulation in equation 1.8 is simply a generalization of the
explanation in the preceding paragraph where range(X) = {1, 0}. The expected value is the
first statistical moment and the variation in the outcomes is given by the variance which is
the second statistical moment and is defined as follows.

σ2 = Var(X) = E
(
(X− µ)2) = ∑

x ∈ range(X)

(x− µ)2P(X = x). (1.9)

The variance is related to the expectation in yet another useful manner.

Var(X) = E(X2)− µ2
X . (1.10)

We will revisit the calculations of expectation and variance again with more rigor in the
next chapter on probability distributions. Here we will simply state some useful results and
study a few examples.

1. E(cX) = cE(X), where c is a constant.

2. E(X + c) = E(X) + c, where c is again a constant.

3. E(X + Y) = E(X) + E(Y).

4. Var(cX) = c2Var(X), where c is a constant.

5. Var(X + c) = Var(X) + 0 = Var(X), where c is a constant.

6. Var(aX± bY) = a2Var(X)+ b2Var(Y)± 2abCov(X, Y), where a, b are constants. Cov(X, Y) =
E(X− µX)(Y− µY) is the covariance of X and Y.
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1.8.1 Example: Expectation of an indicator random variable

A very useful result we will employ in a subsequent example is the expected value of
an indicator random variable defined in equation 1.1. By definition 1.8,

E(1A) = 1× P(A) + 0× P(Ac) = P(A).

1.8.2 Example: Success rate in an infinite series of independent trials

What is the expectation and variance of the number of failures preceding the first
success in an infinite series of independent trials with probability p of success in each
trial?

Solution: Ω = {S, FS, FFS, FFFS, FFFFS, . . .}, where S=Success and F=Failure
Let X be the number of failures.

E(X) =
∞

∑
x=0

xP{X = x}

E(X) = (1− p)p + 2(1− p)2 p + 3× (1− p)3 p + · · ·
(1− p)E(X) = (1− p)2 p + 2× (1− p)3 p + · · ·

We subtract the last two equations and get:

(1− 1 + p)E(X) = (1− p)p + (1− p)2 p + (1− p)3 p+

pE(X) =
p(1− p)

1− (1− p)

pE(X) = 1− p

E(X) =
1− p

p

Now we calculate the variance,

Var(X) = E(X2)− (E(X))2

E(X2) =
∞

∑
x=0

x2P{X = x}

E(X2) = (1− p)p + 22(1− p)2 p + 32(1− p)3 p + 42(1− p)4 p + · · ·
E(X2) = (1− p)p + 4(1− p)2 p + 9(1− p)3 p + 16(1− p)4 p + · · ·

(1− p)E(X2) = (1− p)2 p + 4(1− p)3 p + 9(1− p)4 p + · · ·

Subtract the last two equations and get:

(1− 1 + p)E(X2) = (1− p)p + 3(1− p)2 p + 5(1− p)3 p + 7(1− p)3 p + · · ·
pE(X2) = (1− p)p + 3(1− p)2 p + 5(1− p)3 p + 7(1− p)3 p + · · ·

(1− p)pE(X2) = (1− p)2 p + 3(1− p)3 p + 5(1− p)4 p + · · ·



thinking in probability 39

We subtract the last two equations and get:

(p− p + p2)E(X2) = (1− p)p + 2
[
(1− p)2 p + (1− p)3 p + (1− p)3 p + · · ·

]
p2E(X2) = (1− p)p + 2

[
(1− p)2 p

1− (1− p)

]
p2E(X2) = (1− p)p + 2(1− p)2

p2E(X2) = (1− p)(p + 2− 2p)

p2E(X2) = (1− p)(2− p)

E(X2) =
(1− p)(2− p)

p2

Finally, we obtain the variance:

Var(X) =
(1− p)(2− p)

p2 −
[

1− p
p

]2

Var(X) =
(1− p)(2− p)

p2 − (1− p)2

p2

Var(X) =
(1− p) [(2− p)− (1− p)]

p2

Var(X) =
1− p

p2 .

1.8.3 Example: Expectation and variance of a mean subtracted normalized random
variable

Suppose X is a random variable which takes the values 1, 2, 3 and 4 with probabilities
1
2 , 1

4 , 1
8 and 1

8 respectively. Let a new random variable Y be defined as Y = X−µX
σX

,
where µX is the mean and σ2

X is the variance of X. Use the properties of expectation to
find the expectation and variance of Y. Is this true for all random variables X?

Solution: Take µX = µ and σX = σ.

E(Y) = E
(

X− µ

σ

)
= E

(
X
σ
− µ

σ

)
=

1
σ

E(X)− µ

σ

=
µ

σ
− µ

σ

= 0
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Since Var(c) = 0 and Cov(X, c) = 0 for all constants c;

Var(Y) = Var
(

X− µ

σ

)
= Var

(
X
σ
− µ

σ

)
=

1
σ2 Var(X) + 0

=
σ2

σ2

= 1.

Hence this result is true for all X.

1.8.4 Example: Variance of sum of two random variables

Prove that V(aX± bY) = a2V(X) + b2V(X)± 2abCov(X, Y), where Cov(X, Y) = E(X−
µX)(Y− µY).

Solution: Note that E(aX± bY) = aE(X)± bE(Y) = aµX ± bµY.

Var(aX± bY) = E (aX± bY− (aµX ± bµY))
2

= E (a(X− µX)± b(Y− µY))
2

= E
(

a2(X− µX)
2 + b2(Y− µY)

2 ± 2ab(X− µX)(Y− µY)
)

= a2E(X− µX)
2 + b2E(Y− µY)

2 ± 2abE(X− µX)(Y− µY)

= a2Var(X) + b2Var(X)± 2abCov(X, Y).
Figure 1.15: Homer’s
probability of getting
hired is 1

513 because he
is the 513th candidate.
How he wishes he had
applied earlier! Had he
been the first candidate
to be interviewed, he
would have most cer-
tainly been recruited
because E(11) = p1 = 1.
Moral of the story: Act
fast, do not procrastinate!

1.8.5 Example: Expected number of new recruits per n hiring interviews

Let us consider that a hiring manager has the responsibility of conducting interviews
of n candidates for the post of a peon over a certain period of time. The candidates
appear for the interviews in a random fashion, i.e. from the perspective of the hir-
ing manager; prior to the interview, there is an equal probability among candidates
to be the most suitable candidate. The hires are made on a rolling basis in the sense
that whenever he encounters a better candidate than the existing one, he hires that
person and keeps him in the job until a better candidate is found. How many hires
are made in this process? Can we give an estimate of the cost associated with this
firing-recruiting process?

Consider an indicator random variable 1i =

1; when the ith candidate is hired,

0; when the ith candidate is not hired.

For the ith candidate to be hired, the preceding (i − 1) candidates must not have been
better than this candidate. But since each of these i candidates had an equal chance to
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be hired, the probability that the ith candidate is hired is pi=
1
i . Thus, the total number

of hires is given by

X =
n

∑
i=1

1i. (1.11)

We compute the expected value of X, and by linearity of expectation, we have

E(X) = E(
n

∑
i=1

1i) =
n

∑
i=1

E(1i) =

because E(1A) = P(A) as per sec. 1.8.1

n

∑
i=1

pi

=
n

∑
i=1

1
i

→

Euler–Mascheroni result

log n +O(1), as n→ ∞. (1.12)

This means that for every n interviews conducted by the hiring manager, approxi-
mately log n of them get hired on an average. The cost of the recruitment process is
O(cH log n) where cH is the hiring cost factor.

1.8.6 Example: analysis of sorting algorithm

One of the essential features while analyzing the cost of sorting an array is the num-
ber of existing inversions17 in the array. We will denote an inversion by I. Let us
define an indicator random variable 1A[i]>A[j] when 1 ≤ i < j ≤ n to analyze the
average number of inversions in an array of length n. Let X denote the total number
of inversions in the array, X = ∑n−1

i=1 ∑n
j=i+1 1A[i]>A[j]. Further, P(I) = 1

2 because given
any two distinct random numbers, the probability that one is bigger than the other is
half. This entails E(1A[i]>A[j]) = P(I) = 1/2 for all i < j. Therefore,

E(X) =
n−1

∑
i=1

n

∑
j=i+1

1
2
=

1
2

n−1

∑
i=1

(n− i) =
1
2

n−1

∑
i=1

n− 1
2

n−1

∑
i=1

i =
1
2
(
n(n− 1)− n(n− 1)

2
)

=
n(n− 1)

4
. (1.13)

The expected number of inversions in an array of size n is O(n2).

17 An inversion in an array between a pair of entries is a condition when i < j but A[i] > A[j].

1.8.7 Law of total expectation

Just like we could compute the probability of an event by conditioning over the partitioning
events Ei and calculating the weighted sum, we can perform a very similar calculation for
computing the expected value. This is known as the law of total expectation.
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E(1A) =
k

∑
i=1

E(1A|1Ei )P(Ei). (1.14)

We will use the law of total expectation to estimate the life expectancy of Squeaky in
terms of the average number of hops till the end.

A generalization of the law of total expectation is known as the law of iterated expectations
(LIE).18 18 The law of iterated ex-

pectation implies the law of
total probability as follows.
Consider an event A and a
random variable Y. Then,

P(A) = E(1A)

=

law of iterated expectation

E(E(1A|Y))

= ∑
y

E(1A|Y = y)P(Y = y)

P(A) =

law of total probability

∑
y

P(A|Y = y)P(Y = y)

.

E(X) = E(E(X|Y)) = ∑
y

E(X|Y = y)P(Y = y). (1.15)

Here X and Y belong to the same probability space. E(E(X|Y)) must be understood as
EY(EX(X|Y)) to make the order of the expectation operator with respect to the random
variables, X and Y, explicitly clear.

1.8.8 Example: average number of mangoes eaten per week in a population of engi-
neers

Let us consider a dietary survey of 1000 engineers working in a factory. The popula-
tion of the engineers has males and females. The number of young males is 300 and
the number of old males is 500. The corresponding figures for female engineers are 50
and 150. The survey reveals that among the males, the younger folks eat 4 mangoes
per week while the older folks eat 6 mangoes per week.19 The corresponding figures
for the women engineers are 0 and 4 per week. The question is to find the average
number of mangoes eaten per week by any person from the whole population. Let
M be the number of mangoes eaten by a factory engineer per week. We proceed by
first calculating the chance of encountering a male engineer, pm = 800

1000 . Likewise, the
corresponding estimate for a female engineer is p f = 200

1000 . Here the subscripts m and
f refer to males and females respectively, and the subscripts y and o refer to young
and old respectively.20 Further, py|m = 300

300+500 = 3/8. po|m = 1− py|m = 5/8. There-
fore, computing the expected value of mangoes eaten per week by male and female
engineers as a weighted sum of the mangoes eaten by the respective age-groups,21 we
have the following estimates.

E(M|m) = My|m × py|m + Mo|m × po|m = 4× 3
8
+ 6× 5

8
=

21
4

(1.16)

for the male engineers. Similarly,

E(M| f ) = My| f × py| f + Mo| f × po| f = 0× 1
4
+ 4× 3

4
= 3 (1.17)

for the female engineers.
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Now, using the law of iterated expectation, we have

E(M) = E(E(M
∣∣gender)) = E(M|m)pm + E(M| f )p f =

21
4

800
1000

+ 3
200

1000
= 4.8. (1.18)

So, on an average, the number of mangoes eaten by an engineer from the whole popu-
lation in the factory is 4.8 per week.

21 For simplicity, let us assume that within the same age group, the answers in the survey are consistent and
identical.
21 This is one of the very rare instances in the book where we have used both uppercase (M) and lowercase
letters (y, o, m, f ) to denote random variables.
21 cf. explanation given in the introductory paragraphs of section 1.8

Figure 1.16: Should
the mango vendor
bring more mangoes
to the factory during
the lunch breaks?

1.8.9 Law of total variance

The law of total variance22 is another useful result that we will simply state here as follows.

22 There is a similar law of
total covariance which we
will not discuss in this text.

Var(Y) = E(Var(Y|X)) + Var(E(Y|X)). (1.19)

1.9 Chapter project: Random walk on a lonely island

1.9.1 Epilogue: Life expectancy of Squeaky

Given that we have predicted Squeaky’s fate, our next question of interest is: what is her
life expectancy in terms of the number of hops from the beginning till the end? Let D be
the number of hops till the end. We will use the law of total expectation and once again
condition upon the event E as follows:

Em = E(D|X0 = m)

= E(D|E and X0 = m)P(E|X0 = m) + E(D|Ec and X0 = m)P(Ec|X0 = m)

=
1
2

E(D|X1 = m− 1) +
1
2

E(D|X1 = m + 1)

reset chain
=

1
2

(
1 + E(D|X0 = m− 1)

)
+

1
2

(
1 + E(D|X0 = m + 1)

)
Em = 1 +

1
2

Em−1 +
1
2

Em+1. (1.20)

Equation 1.20 is a non-homogeneous recurrence relation.

Questions:

1. Explain the appearance of the numeral 1 in the recurrence relation 1.20.

2. Solve the non-homogeneous recurrence relation 1.20 to estimate the life expectancy of
Squeaky Em.

3. Find the starting location of Squeaky’s hopping expedition to maximize her life span.

4. Compare the estimate of Em from the computer simulation you developed earlier in
the chapter with the theoretical estimate of Em above. Comment on the origin of any
discrepancy you observe in the comparison.



44 play of chance and purpose
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1.11 Exercise problems

1. (Combinatorics) Out of a population of 10 digits running from 0 through 9, what is the
probability that five consecutive random digits are all different?

2. (Occupancy problems: Bose-Einstein, Fermi-Dirac, and Maxwell-Boltzmann statistics)
This model relates to placing randomly r indistinguishable balls (particles) into n cells
(quantum states). Consider the occupancy numbers r1, r2, ..., rn

23 satisfying ∑n
i=1 ri = r. 23 Occupancy number rk

stands for the number of balls
in the kth cell.

Two distributions of the balls are distinguishable only if the n tuples (r1, r2, ..., rn) are not
identical.

2.I Bose-Einstein statistics: This is a model for photons, nuclei, and atoms containing an
even number of particles.

(a) Find an expression for the number of distinguishable distributions, Ar,n.

(b) Find an expression for the number of distinguishable distributions in which no cells
are empty.

(c) What is the probability of each distribution in (a)?

(d) Given n = 5 quantum states (cells) and r = 3 indistinguishable particles, what is the
probability of the distribution (∗|_| ∗ | ∗ |_) in Bose-Einstein statistics? Here ∗ represents
a particle, an empty orbital is denoted by _ , and the barrier between two successive
orbitals is denoted by the symbol |.

2.II Fermi-Dirac statistics: This is a model for electrons, neutrons, and protons. This
model assumes (i) it is impossible for two or more identical particles to be in the same
quantum state24, i.e. r ≤ n; and (ii) all distinguishable distributions have equal probabili- 24 Pauli’s exclusion principle.

ties.
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(a) How many such distributions are possible?

(b) What is the probability of the distribution (∗|_| ∗ | ∗ |_) in Fermi-Dirac statistics?

2.III Maxwell-Boltzmann statistics: This is a model for material particles distributed
over various energy states in thermal equilibrium in classical mechanics. This model
does not apply to quantum particles. In this model, the number of ways we can place
r distinguishable particles in n cells is certainly n× n× · · · × n︸ ︷︷ ︸

r times

= nr when sampling

with replacement is permissible.25 25 To illustrate this further,
consider that the n cells are
in a bag, we randomly select
a cell from this bag and place
one of the r particles in it.
Consequently, we put this cell
back in the bag and continue
sampling, accounting for the
fact that the same cell (as was
chosen from the bag before)
may be sampled again to be
filled by yet another particle.
This is akin to sampling with
replacement. This way of
placing r particles in n cells
(with replacement) is similar
to throwing an n-sided dice r
times.

(a) Find the number of ways in which a population of r particles can be partitioned into n
cells such that r1 + r2 + · · ·rn = r.

(b) Given occupancy numbers r1, ..., rn, what is the probability of this distribution in
Maxwell-Boltzmann statistics?

(c) What is the probability of the distribution (∗|_| ∗ | ∗ |_) in Maxwell-Boltzmann statis-
tics?

3. (Quadratic equation with stochastic coefficients) Each coefficient of a quadratic equation
ax2 + bx + c = 0 is determined by the throw of a regular die. Find the probability that the
equation will have at least one real root?

4. (Medical diagnosis of prostate cancer) Prostate cancer is the most common type of can-
cer found in males. As an indicator of whether a male has prostate cancer, doctors often
perform a test that measures the level of the PSA protein (prostate specific antigen) that is
produced only by the prostate gland. The test is highly unreliable even though there is a
strong correlation between high PSA value and incidence of cancer. Indeed, the probabil-
ity that a non-cancerous man will have an elevated PSA level is approximately 0.115, with
this probability increasing to approximately 0.273 if the man does have cancer. If, based
on other factors, a physician is 81 percent certain that a male has prostate cancer, what is
the conditional probability that he has the cancer given that

(a) the test indicates a high PSA level;

(b) the test does not indicate a high PSA value?

Re-estimate your probabilities if the physician initially believes there is a 29 percent
chance the man has prostate cancer.

5. (Spacecraft control system)26 The flight control computer on a spacecraft employs four 26 Architecture of the Space Shut-
tle Primary Avionics Software
System by Gene D. Carlow,
Communications of the ACM,
27 (9), 1984.

independent flight computers that work in parallel - a much required redundancy built
into the system. During every critical flight path decision, the computers "vote" to decide
on the most important step. e.g., in case of a "roll" decision, the probability that a com-
puter will make an error is 0.0002. Let X denote the number of computers that vote for an
erroneous roll movement. Compute E(X) and Var(X).

6. (A game of dart) In a game of dart, a participant is given three attempts to hit a target.
On each try, she either scores a hit, H, or a miss, M. The game requires that the player
must alternate which hand she uses in successive attempts. That is, if she makes her
first attempt with her right hand, she must use her left hand for the second attempt and
her right hand for the third. Her chance of scoring a hit with her right hand is 0.7 and
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with her left hand is 0.4. Assume that the results of successive attempts are independent
and that she wins the game if she scores at least two hits in a row. If she makes her first
attempt with her right hand, what is the probability that she wins the game?

7. (Random sums) Let X1, X2, . . . be i.i.d.27 random variables and let E(X1) = µX . Let N be 27 independent and identically
distributed random variablesa non-negative integer valued random variable that is independent of the sequence of Xs

and let E(N) = µN . Define the random sum S to be S = X1 + X2 + . . . + XN where S = 0
if N = 0.28 What is E(S)? 28 Notice that S is the sum of a

random number of terms.Hint: Use the law of iterated expectation, i.e. condition your computation on N = n.

8. (Population growth model with random progeny and no deaths) Consider a population of
tumor cells where each cell has a random number of progeny. Consider that the number
of progeny of the proliferating cells is i.i.d. with mean µ. Suppose the process starts with
one cell in generation zero. For simplicity let us assume there are no deaths. What is the
expected total number of tumor cells in n generations? For n → ∞, find a condition for
arresting the rate of growth of tumor cells.
Hint: In the formulation of the question above, consider Tk ≡ S = number of cells in generation
k. Tk = X1 + X2 + ... + XTk−1 . Here X1, X2, etc.... are the numbers of progeny of the first, second,
etc. ... cells in generation k− 1. This gives E(Tk) = µE(Tk−1). The final answer is ∑n

k=0 E(Tk).

9. (Matching probability) Consider n letters that are designated for n envelopes. However,
the letters and envelopes are not in order (they are randomly arranged) and hence the
letters may not go in the correct envelop. Let Ak denote an event when a match occurs in
the kth place. What is the probability of the event Ak? What happens as n→ ∞?

10. (Ordering of events and their probability) Consider a probability measure P defined on
an appropriate probability space (Ω,F, P). Let E1, E2 be events from the event space F

such that E1 ⊂ E2. Deduce a relationship between P(E1) and P(E2).

□
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