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Abstract. This article presents a Hamiltonian architecture based on vertex types and empires for demon-
strating the emergence of aperiodic order in one dimension by a suitable prescription for breaking translation
symmetry. At the outset, the paper presents different algorithmic, geometrical, and algebraic methods of
constructing empires of vertex configurations of a given lattice. These empires have non-local scope and
form the building blocks of the proposed lattice model. This model is tested via Monte Carlo simulations
beginning with randomly arranged N tiles. The simulations clearly establish the Fibonacci configuration,
which is a one-dimensional quasicrystal of length N, as the final relaxed state of the system. The Hamil-
tonian is promoted to a matrix operator form by performing dyadic tensor products of pairs of interacting
empire vectors followed by a summation over all permissible configurations. A spectral analysis of the
Hamiltonian matrix is performed and a theoretical method is presented to find the exact solution of the
attractor configuration that is given by the Fibonacci chain as predicted by the simulations. Finally, a pre-
cise theoretical explanation is provided which shows that the Fibonacci chain is the most probable ground
state. The proposed Hamiltonian is a mathematical model of the one dimensional Fibonacci quasicrystal.

1 Introduction

The simplest geometrical method of generating a one
dimensional quasicrystal, such as the Fibonacci chain, is
by the cut and project procedure from a strip embedded
in the two dimensional Z, lattice and with a slope pro-
portional to the Galois conjugate fé, where ¢ = % is
the golden mean [1,2]. The method can be replicated to
generate higher dimensional quasi-lattices. However, this
purely geometrical construction does not lend a physical
picture of the underlying energetics of the quasicrystal
configuration. Specifically, it is of immense importance to
experimentalists and material scientists to understand the
microscopic atomic arrangements in a quasicrystal [3,4].
Besides, a physical picture of the emergence of transla-
tion asymmetry may be of general interest to scientists
striving to unravel the laws of nature through the study
of symmetries and conservation principles [5-8].

*Supplementary material in the form of three mpeg files
and one mp4 file available from the Journal web page at
https://doi.org/10.1140/epjb/e2020-100544-y.
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1.1 Brief introduction to quasicrystal models

Quasicrystal models can be broadly categorized as under:

— microscopic tiling models based on matching rules
[9717]7

— continuum models [8,18-20], and

— computational models based on molecular dynamics
(MD) simulations of Newton’s equations of motions
[21,22] or Monte-Carlo (MC) methods [23,24].

Matching rules based tiling models are abstract mathe-
matical approaches that are useful to investigate the prop-
erties of aperiodic order but by themselves they are not
directly physically realizable models. Continuum models
like the density wave approach involve analyzing density
of the condensing liquid phase in Fourier phase space. The
basic hypothesis in such approaches relies on the con-
servation of the free energy of the system upon a rigid
translation of the cut space. A minimization of the Lan-
dau free energy in the Fourier space representation selects
specific series expansion coefficients that set particular
wave vectors and consequently characterize the resulting
underlying stable structure which is aperiodic but ordered.
The continuum models do not reveal the nature of inter-
atomic interactions responsible for quasicrystal formation.
MD simulations involve solving Newton’s classical equa-
tions of motion with specifically prescribed pair potential
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interactions (e.g., the Lennard-Jones-Gauss (LJG) poten-
tial [23,24]) that have local scope. The aforementioned
simulations have successfully demonstrated quasicrystal
growth with long range order using local interactions.
The experimental plausibility of local interactions driv-
ing quasicrystal growth has also been demonstrated for
the decagonal case [25]. Further, in MC simulations using
the LJG potential [24], in dynamic phase field simu-
lations in two dimensions [26], and in entropy-driven
tiling models [27,28], defect free quasicrystal growth by
accretion is observed. However, in atomic quasicrystals,
it is believed that quantum mechanical effects may be
important [29-31].

1.2 The Fibonacci quasicrystal

We have chosen the Fibonacci model as a subject of inves-
tigation because it is the most elementary quasicrystal
model in one dimension. Even though the Fibonacci chain,
defined mathematically in a subsequent section of this
paper, is generally regarded as a theoretical construct
to study and conceptualize aperiodic order, it has direct
relevance in many physical applications as well.

The Fibonacci system is a widely studied model.
Fibonacci quasicrystals have been artificially fabricated
[32] and their characteristic physical and topological prop-
erties have been investigated [33,34] in the laboratory.
Several authors have studied electronic structures and
energy spectrum of Fibonacci quasicrystals by consid-
ering tight binding Hamiltonian models with hopping
constants prescribed by a finite Fibonacci word (Fibonacci
approximant) [35-39].

In this paper, we propose a tiling model in the form of
an appropriate Hamiltonian for stabilizing a one dimen-
sional random chain into the Fibonacci quasicrystal. The
proposed mathematical model is based on a Hamilto-
nian involving non-local empire-empire interactions. The
empires have a generalized geometrical notion and can be
constructed for any given chain configuration of long and
short tiles in one dimension (not just for the Fibonacci
configuration). The proposed lattice Hamiltonian has a
ground state which is the Fibonacci quasicrystal.

1.3 Scope of this work

The stability of quasicrystal structures is still an open
problem. This research paper presents a Hamiltonian
architecture using vertex configurations (VCs) and their
respective empires to understand the nature of atomic
re-arrangements compatible with a stable quasicrystal
configuration in one dimension. The theoretical model
presented here assumes non-local interactions between
empire-pairs. Non-locality is manifested in the non-local
scope of empires of the VCs. The proposed Hamiltonian
is promoted to a matrix operator form whose constituents
have a geometrical interpretation. The simulations of the
proposed Hamiltonian model demonstrate the manner in
which a random assortment of tiles interacts and rear-
ranges to form a one dimensional Fibonacci quasicrystal.
A detailed spectral analysis of the Hamiltonian operator
reveals that the Fibonacci state is the most likely ground
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state of the system. This aperiodic Fibonacci ground state
can be generated entirely by the interaction of a collection
of sub-states (empires) of different chain configurations
undergoing energetic relaxation.

1.4 Organization of this paper

Section 2 introduces the definition of Fibonacci words in
a recursive manner, and presents three different methods
of constructing empires for a given VC in a Fibonacci
chain. While the geometric method is primarily useful for
implementing the Monte Carlo simulations discussed in
the latter section, the algebraic expression of the empires
of a Fibonacci chain will be key to understand the manner
in which the translation symmetry is broken as discussed
later. Section 3 discusses the implementation of the Monte
Carlo simulation of the proposed Hamiltonian model and
presents results of these simulations. In Section 4 the
matrix operator form of the Hamiltonian and its spec-
tral analysis is presented and these analytical results are
compared with the results of the simulations. A direct
physical explanation is provided as to why the Fibonacci
chain is the most likely ground state of the system as is
evident from the simulations. In Sections 5 and 6, a sum-
mary of the main contributions of this paper is presented
and future plans to extend the work to two dimensional
quasicrystals are outlined.

At the very outset, it must be carefully noted that
unless otherwise specified, by the phrase Fibonacci chain,
we refer to the finite Fibonacci approximant in this article.
This terminology is interchangeably used with equiva-
lent phrases such as Fibonacci configuration and Fibonacci
state.

2 The Fibonacci lattice

A Fibonacci sequence is constructed from the Fibonacci
numbers by using the following recurrence relation,

Fn+1:Fn+Fn—17 (1)

where Fy = 0,F; = 1. An interesting property of this
sequence is the golden ratio scaling, lim,_, ., i = ¢

where the rapid convergence to ¢ (the golden ratio) can
be verified in a simple manner. A Fibonacci word is
constructed using the following recurrence relation,

Sn = n—lSn—27 n > 27 (2)
with Sy = 0,57 = 01. Thus, a Fibonacci word of length n
is a finite sequence of 0 and 1 constructed as above [40,41].
The relationship between a finite Fibonacci word and the
Fibonacci sequence stems from the fact that the length of
Sp 18 Fp4a, the (n + 2)th Fibonacci number. A Fibonacci
lattice or Fibonacci quasicrystal of size n is a lattice with
grid spacing encoded by the Fibonacci word S,, where
0 — ¢ and 1 — 1. A standard representation of such a
quasi lattice is given by replacing 0 by L and 1 by S where
the symbols L and S are regarded as tiles. E.g., a section of
a Fibonacci quasicrystal in the L, S representation looks
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V.  set of VCs (vertex configurations) = {{L,L},{L,S},{S,L}}
X :  set of coordinates denoted by subscript numerals, i.e. (zg, z1,22,...) = (0,1,2...)
aj 1 the VC a located at coordinate j 3)
+1, if tile located at [ is .S
Eq; 1= ¢ —1, if tile located at [ is L
0, otherwise (i.e. unforced tile)
7; binary representation of the tiling space with entries 1 for S and —1 for L

Q: domain of the lattice containing the set {a;}i—2.;y where N is the length of the lattice

like ... LSLLSLSLLSLLS... . Thus, a Fibonacci lattice is
a quintessential example of a one dimensional quasicrystal.

2.1 Vertex configurations and empires

The model demonstrated in this manuscript is designed
based on VCs and empires. These are standard canonical
descriptors of quasicrystals [42]. For the 1D Fibonacci qua-
sicrystal, there are three VCs, viz., {L, L}, {L,S},{S, L}.
Note that the tile S cannot appear in succession in a
Fibonacci lattice and hence {S, S} is not a legal VC.

2.1.1 Notations and definitions
2.1.1.1 Empire

Corresponding to each vertex type (vertex configuration)
at each coordinate, there is a set of forced tiles that
constitute the respective empire [43-48]. The precise for-
mulation of an empire for a given VC will become clear
through the detailed discussions of this section.

Generally speaking, there are three ways of constructing
empires of a VC in a quasicrystal. For the one dimen-
sional case, a simple substitution rule may be used to
enlist the empires for any vertex configuration [2]. Alterna-
tively, a geometric method using an irrational projection
from a two dimensional lattice may be used to gener-
ate the empires of a given VC [49,50]. Finally, a set of
algebraic formulae for the empires of the one dimensional
Fibonacci quasicrystal is developed and presented here.
All these methods are discussed in an elaborate manner in
the context of the one dimensional Fibonacci quasicrystal.

In what follows, the mathematical notation and defini-
tions of the related terms are given below.

See equation (3) above.

For the sake of notational brevity, a tile referenced by the
coordinate [ means that the tile is located between the
lattice coordinates [ and [ + 1 for a right sided entry and
between the coordinates —! and —I — 1 for a left sided
entry. For example, consider the chain expressed by (5).
The tile referenced by [ = 1 is S located between [ = 1
and [ +1 = 2.1 A VC referenced by coordinate j refers to
the one composed of the tiles on either side of j. Finally,

I Left and right sided entries in an empire vector are with ref-
erence to the coordinate located at the center of the VC, this is
analogous to a radial convention with the center of the VC as the
origin.

the VC-empire parameterization encompasses the local
and non-local field of influence of a given VC through
its domain of influence by the forced tiles. Concisely, this
empire field of VC «a situated at j is denoted by the empire
vector
Eo, = (.. ELESN ESFESFESTENT.),

where superscripts L and R refer to left and right sided
entries respectively. In the following three sections, we dis-
cuss three different methods of finding the empires of VCs.
The substitution method and the geometric method of
constructing empires have been explored by others in the
past but the algebraic prescriptions of the empires are new
results presented here.

2.1.2 Substitution algorithm for constructing empires

This algorithm borrows extensively from detailed dis-
cussions on substitution rules for generating aperiodic
Fibonacci words in chapter 4 of the text by Baake and
Grimm [2]. This method is applicable for the one dimen-
sional Fibonacci chain but may be extended as a principle
to a network of Fibonacci chains. The identification of the
empire tiles in a real Fibonacci chain, denoted by upper-
case S and L tiles, is undertaken by referencing from a
virtual Fibonacci chain, denoted by lowercase s and [
tiles. The virtual chain (hitherto referred to as fibonacci)
begins with the tile [ and is constructed by using the sub-
stitution rule I — Is, s — [ iteratively. Thus the first few
iterations give [sllslsl because | — ls — lsl — Islls —
Isllslsl. The VCs along with their respective empires can
be expressed algorithmically as follows.

s — SL

l— (LS|SL)L

s — (LS|SL)L

| - (LSLS|SLSL|SLLS)L
s — (LS|SL)L

| - (LSLS|SLSL|SLLS)L

(4)

Here, each line of the algorithm must be read as follows.
E.g., the first line means: “the empire of a given {L, L} VC
in a real Fibonacci chain is constructed by the substitu-
tion {L,L} — LL, and s — SL,l — (LS|SL)L performed
on the virtual fibonacci chain s 4+ fibonacci where the

{L,L}s + fibonacci ~» {
{L,S}L + s+ fibonacci ~~ {

{S,L}s + fibonacci ~» {
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~SLSLLSLLSLSLLSLLS L S LLSLSLLSLLSLSLLSLLSLS... (5)
Tttt et s =322 110111243 0 AT b T T
LOOLSLOOLSLO)OLOOLSLOOLS L L SLO)(OLSLOOL(O)(OLSLO)()LSL()()L 6
LOOLSLOOLSLOOLOOLSLOOLS T L SLOOLSLOOLOOLSLOOLSLOOL (©
~
EIL ElR

1_ 1 _ 1L 1L 1L 1L 1 1L 1R plR plR plR plR 1R
Eo = {EOJ}ZEX,XEQ = ( E07,5 E0,74 E0,73 E07,2 Eo,fl Eo,o Eo,o Eo,l Eo,z E0,3 E0,4 Eo,s )

=(.00—-11-100-11-1 -1 1-100-11-100..) (7)
— ~~

1L 1R
EO.O EO,O

forced tiles are expressed without parenthesis, the opera-
tion | means conditional OR, and ~~ stands for the above
mentioned substitution.” Above, only a right sided empire
identification procedure has been shown but extension to
the left of the VC is straightforward by symmetry consid-
eration. This is made clear in the example presented in
the following section.

2.1.2.1 lllustration of the algorithm

Consider a given section of a 1D Fibonacci chain (labelled
as the real chain):

See equation (5) above.

where the bold font tiles LoL constitute the VC of inter-

est located at the coordinate zg = 0 in this example.
The underset numerals denote coordinate locations (recall
that the tiles are indexed by the coordinates to their
immediate left). The significance of the underset upar-
rows 1 is explained after expression (7). The 1D Fibonacci
chain in (5) is represented in tiling space. The equiva-
lent binary representation of the chain is a sequence {7;}
with entries +1 depending on the corresponding entries
in the tiling space, i.e., —1 for L and 1 for S. Thus, we
have 7 3 =17 o =—-1,71 =119 =-1,m = -1, =
1,73 =—1,... etc.

The first step involves the construction of the virtual
Fibonacci chain that serves as a guide to identify the
forced tiles in the real chain and thereby the corresponding
empire. The algorithm prescribes the form of the virtual
chain to be s + fibonacci where fibonacci begins with
the tile I and is constructed by using the substitution
Il — ls, s — [ iteratively as mentioned earlier. Thus we
have the following virtual chain,

s+ Isllslsl... = slsllslsl... .

The substitution rule for {L, L} is applied to the above
virtual chain, i.e. s = SL,l — ()()L where each () corre-
sponds to one unforced tile. Further, the unforced tiles are
labelled by Os for convenience. This entails the following
empire form.

See equations (6) and (7) above.

Fig. 1. (Not to scale) Proof of concept of the cut and project
method to find the empire of a given vertex configuration,
{L, S}, bounded by the lattice coordinates (z3,ys), (x4, y4) and
(zs5,ys). The empire window depicted by the horizontal dashed
lines is bounded by the maximum and minimum y-coordinates
of the lattice points defining the VC, shown here by solid dou-
ble lines (oblique) bounded by the horizontal dashed lines.
Tiles that have both their bounding coordinates within this
empire window constitute the empire of the given VC. Thus, for
the string shown here, the section of the empire corresponding
to the {L, S} VC is: ...L()()LSL()....

The tiles bearing the underset uparrows 1 are the forced
tiles of the VC LL. The corresponding tiles in the real
chain (5) are consequently indexed by the uparrows 1 and
constitute the forced tiles of the empire of the VC LL.
The coordinate locations for the chain in (6) are implied
as in (5) and are not shown again. In terms of the vectorial
notation, the empire for {L, L} located at j = 0 is given
by equation (7).

2.1.3 Geometric method of constructing empires

The cut and project method of constructing the empire of
a given vertex configuration is illustrated in this section.
This method can be applied for any chain (not neces-
sarily a Fibonacci chain). It may be recalled that a 1D
Fibonacci chain can be constructed by projecting a two-
dimensional cylindrical section of the Z, lattice onto a
1D real line by using an irrational angle [1,2]. Hence, it
is reasonable to search for the forced tiles that consti-
tute the empire of a given vertex type within this band
of the original Zs lattice. For convenience of calculation,
we consider a rotated frame of reference of the original
Zs lattice (a.k.a. mother lattice) such that the horizontal
z-axis of the new 2D plane coincides with the projected
quasicrystal space of the Fibonacci chain (refer Fig. 1).
In this frame, the horizontal and vertical arms of the
Zo lattice appear at an irrational angle with respect to
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the z-axis as is further illustrated in the graphic depicted
in Figure 1. The lattice arm joining points (zg,yo) and

(x1,71) makes an angle § = tan™* % with the horizontal

axis. Here ¢ = % Moreover, the lattice arms are each
of unit length and orthogonal to each other. The arm join-
ing the points (z2,y2) and (x1,y1) also makes the same
angle 6 with the vertical.

Given the state of a two-alphabet chain (Fibonacci or
otherwise) in 1D, the first step involves reconstructing the
corresponding section of the Zs lattice, i.e., the (z,y) coor-
dinates in the original 2D space. Following Figure 1 and
simple trigonometry, we obtain the following relations,

= _ 1+

Yi = Yi—1 — Tisin(O;7/2+60), ©;= 27 7
,ifm=—1

S { ¢7 ifr; =1. (8)

The starting point of the chain is located at the origin,
i'e'v (x(hyo) = (07 0)

Next, the calculation of the empire is undertaken by
identifying the bounding (z,y) coordinates of the VC in
question for which we intend to find the empire. The
empire window is constructed in the 2D plane by find-
ing the minimum and the maximum of the y-coordinates
associated with the VC. This is illustrated graphically in
Figure 1. The tiles with both bounding (z,y) coordinates
within the empire window constitute the empire of the
given VC. It is important to emphasize that this method
of finding the empires is not restricted to a Fibonacci chain
alone but is more general and works for any 2-alphabet
chain.

2.1.4 Algebraic formulae of empires

This section presents analytic expressions of the empires
for the Fibonacci quasicrystal and thereby prescribes the
exact form by which the translation symmetry is absent. It
must not be surprising that the expressions are related to
the Fibonacci word. The empires obtained by using these
formulae are validated against the corresponding empires
constructed by two other methods explained above. In the
following paragraphs, we illustrate the algebraic forms of
the empires for each VC of the chain.

2.1.4.1 Symmetric VC, {L, L}

We provide a direct analytical expression for every element
of the empire vector E. For example, the (I —j — 1)th
entry of the empire vector EJ (for VC {L, L}) is given
by

E]Hl% = E}LR = fn+l(fn + fn—l) - fn7
n=1[1—j>0,
E0 = B3 = —1 (by construction), 9)
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where f,, is the nth bit of an infinite Fibonacci word?

fn =2 + Uy — Un41, Un = anﬁJ’

¢ is the golden ratio 1+2\/5' The superscript R denotes
empire entries to the right of the VC located at j includ-
ing the right tile of the concerned VC. Also note that
fo = 1, i.e. the Oth bit of a Fibonacci word is taken as
1 by prepending 1 to the Fibonacci word defined by the
recursion (2), f1 =0, fo =1, etc.. || is the standard floor
operator that outputs the integer part of the argument.
For consistency, entries from equation (9) are compared
with that of entries from equation (7). Egff = =1, Egff =

1(04+1)—0=1, Egf=0(140)—1=—-1, E}5 =000+
1)—0=0, E04—1(O+0) 0=0, EO5 =0(140)—1=
—1.

Owing to the symmetry of the {L, L} VC, using f_,, =
fn in conjunction with the formula given by equation (9),
gives the entries of the empire vector to the left of LL. For
a symmetric VC like {L, L}, the following is trivially true:
EL = B Here L corresponds to left and the convention
for referencing the tiles is the following:

— tiles to the right of the VC are referenced by the
coordinate x; to their immediate left, and

— tiles to the left of the VC are referenced by the
coordinate x; to their immediate right,

i.e. the convention follows a radial indexing scheme with
the center of the VC located at z; (z¢ in the above
example) as the origin. Additionally, Ejf = Egf, each
referencing the right and left tiles that respectively con-
stitute the VC. Finally, Ej = E}* + E}® constitutes the
full empire vector. Here

EiLy = (.. Byl s E- , E§E g ESE By 4 Ej5000000...)
and likewise for E;EO. For brevity, the superscripts L and
R are often omitted and the sign of the subscript n =1 —j
is sufficient to identify the left and right tiles.

2.1.4.2 Asymmetric VC, {L,S},{S, L}

Similarly, exact formulations of the asymmetric VCs are
given below.

SR _ {—1; n=20
" 3+ up —uUpyo; n 21,
1; n=0
FE*R={_1, n=1 (10)
Ele; n > 1.
By symmetry, the left sided entries are
B3 —E2R n>0
E*L = 3R p>0. (11)

2The first few entries of an infinite Fibonacci word are
1,0,1,0,0,1,0,1,0,0,1,0,0,1,0,1... after prepending by 1 that is
now taken as the Oth bit of an infinite Fibonacci word.
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Clearly, the non-trivial empire tiles obey the following
relations B3, = B2, E?2_ = E3, n > 0. Moreover, E} =
E;-"L + E;-"R constitutes the full empire vector for the VCs
a = 2,3. The definitions of wu,, E]‘?‘L and E?R are as
described earlier. Note that for an asymmetric VC, the
0th mode empire tiles E§f # E§{ are defined as above.
This completes the parametrization of the 1D Fibonacci
chain in terms of the VCs and the corresponding empires.

2.2 Random flips

The Monte Carlo simulations of Section 3 below employ
random flips to span the different chain configurations. A
random flip can be categorized as follows:

— symmetric flip: For the 1D case, this refers to the
flips of the type {L, S} « {S, L}. A flip of this kind
preserves the local length at the location of the flip.

— asymmetric flip: This refers to the flips of the
type {L,L} <> {S,L} or {S,L} « {L,L}, etc. A
flip of this kind does not preserve the length of the
quasicrystal section locally.

3 Hamiltonian

The canonical Hamiltonian Hq for the 1D Fibonacci
system is constructed as follows:

1 1
Hq = N Z By iEq, i N Z Jj (B, |Ea,)
k,iieX jieX

interaction free terms interaction terms

1 1
_N Bk,iEuk,i - ij,i <Eu1 ‘Ea,>7

Einstein summation notation

(12)

where By ; and J;; are the free parameters of the model
with units of energy and E,; = Ef' is a dimensionless
vector of Os and +1s denoting the empire of the VC «
located at j. Here, (-|-) denotes an inner product oper-
ation: (A|B) := 3. A;B;, where A, B are vectors with
entries A; and B; respectively. The locations of the forced
tiles are referenced by the elements &1 in the vector E,
depending on whether the forced tile in question is S or L.
The Hamiltonian in equation (12) has two terms, viz., the
interaction free term which expresses the energy of a given
VC (in conjunction with its empire field) in an external
field or in vacuum, and the interaction term that encom-
passes the mutual energy of interaction of two distinct
VCs through the interaction of their respective empires.
It is important to note that by construction, the empire
interactions are non-local because the values of m and n
can be far apart.

3.1 Metropolis-Hastings simulation of the
Hamiltonian

The algorithm first chooses selection probabilities pg(u, v/)
which represent the probability that state v is selected by

Eur. Phys. J. B (2020) 93: 67

the algorithm out of all states given that the previous
state is p. It then uses acceptance probabilities p,(u, v)
that ensure the detailed balance condition.

3.1.1 Simulation steps

— A lattice site is randomly picked from the Fibonacci
grid using selection probability ps (i, v) and the con-
tribution to the total energy involving the VC at this
site is calculated.

— The VC is flipped and the new contribution to
the energy is calculated. The flip may be LL —
LS, LS — SL,SL — LL, etc.

— If the new energy is less, then the flipped value is
retained.

— If the new energy is more, then the flipped value is
retained with probability e =#(#»—Hu) Here § = ﬁ

B
where kp is the Boltzmann’s constant and T is the
temperature.

— The process is repeated until a global minimum of
the total energy is attained.

3.2 Simulation parameters

Parameter Value
By = Oor1
Jj,i =J 1

T 0.6

N 217

1 N = 21 corresponds to the simulation shown in Figures 2
and 3. The source files used for developing and running the
simulations are freely available in a GitHub repository.?
The choice of unit coupling constants J; ; is natural and
ensures equal weight to the interactions between empires
of pairs of VCs irrespective of their location in the chain.

3.3 Results of simulations

Several simulation runs with chains of different lengths
(N =5,8,13,21, 34,55, 89, 144, and 233) were performed
starting with different initial states of the chain. In each
case, the attractor, that minimized the total Hamiltonian,
was found to be the Fibonacci chain. In Figures 2 and 3, an
example of one such simulation with N = 21 is presented.
A selected number of movies of the simulations can be
found in the first author’s youtube channel.*

3.4 Distribution of the attractor and invariance of the
Hamiltonian to initial conditions

It is important to note that by establishing the Fibonacci
chain (a.k.a. the Fibonacci state) as the attractor of the
Hamiltonian (12), as shown by the simulations, we are
essentially interested in the relative distribution of the L
and S tiles. In the next section, we invoke the ansatz that

3 https://github.com/amriksen /Fibonacci_Ham_code_web

4 https://www.youtube.com/watch?v=MirQPchbo7Q
https://www.youtube.com/watch?v=1n-je95jOlk
https://www.youtube.com/watch?v=_KsToOQs5hc
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Fig. 2. The set of plots corresponds to the initial state of a chain of length N = 21 (bottom left panel) at the start of the
simulation where the tiles L and S are color coded as green and red respectively. The VC pairs being flipped are shown by the
black colored stem pairs displayed in the top panels. The number of defects in the current state of the chain corresponds to the
number of forbidden elementary configurations (LLL and SS) in a Fibonacci chain. The coordinates of the 2D lattice (mother
lattice, ref. Fig. 1), from which the current state of the chain may be constructed, are shown in the bottom right panel. The
total Hamiltonian of the current configuration is displayed in the middle right panel.

the distribution of the sign of the entries of the most rele-
vant eigenvector of the Hamiltonian matrix prescribes the
attractor configuration. The applicability of this ansatz
is found to be consistent by treating the Hamiltonian as
a quantum mechanical system and verifying one of the
main axioms of probability as discussed in the subsequent
section. It must be noted that the choice of labels for the
ternary system used in the definition of the empires in
Section 2.1 is entirely arbitrary and a matter of com-
putational convenience. It must be emphasized that the
results of the simulations are invariant to the initial state
of the chain as is shown by the above cited movies of the
simulations and Figures 2 and 3.

4 Empire dyads, spectral analysis, and the
Fibonacci state

In order to formulate an algebraic representation of
the Fibonacci system and the associated empire dyads,
it is essential to promote the Hamiltonian defined by
equation (12) to a matrix operator form. Moreover, since

the external field B,, ;, plays no influence on the final
attractor configuration, the interaction free term will be
omitted from consideration in the theoretical analysis of
the Hamiltonian presented in this section. This is a mat-
ter of convenience without any loss of generality. Thus, in
the absence of the external field B = 0, we will present an
interpretation akin to quantum mechanics in the spirit of
the discussions in the literature [51-53].

4.1 Construction of empire dyads and the
Hamiltonian matrix operator

Consider any chain (not necessarily Fibonacci) of fixed
length N (i.e. N lattice sites) where N is moderately large.
The matrix operator, corresponding to a pair of interact-
ing empire vectors® of VCs a and 3 located at positions

5 Note that the geometric method of constructing empires enables
us to find the empire of a VC located at a certain coordinate of any
chain configuration. Hence, the notion of empires is not restricted
to a Fibonacci quasicrystal but applies to any configuration of the
chain.


https://epjb.epj.org/

Page 8 of 14
8
B Current state of chain with empires
g
204
203
o
O o02r- T
o
£ o1
2o o o o 4 o o o o o 3+ o » +o o 3 o
=3
& o1
&
£ o2
Q s s ) 6 o s
Bt 1
T o5 1
2 0 2 4 6 8 10 12 14 16 18 20 22
8 tile coordinates

No. of defects in current state of chain
T

s qummp

7
2]
3
-
=)
=
2
Ss e
B !
5
Ba- o
€
8, &
g
2
5. . 1
2
£o o st s
E% 3 1 = 500 0
z

iteration count

Phason dynamics

o1

T

lattice configuration: L (green), S (red)

0 2 4 6 8 10 12 14 16 18 20 2
tile coordinates

Eur. Phys. J. B (2020) 93: 67

Proposed state of chain with empires
T

e o 8 4+ o ® 3 o o o & o o
01
02
= ° o o ]

1
12 14 16 18 20 22

° 2 4 6 8 10
tile coordinates

activated VC displaying the constituent tiles

. Dynamic of the | total energy of the chain
- T T 7
200
>, -400
2
2
S sw
=
L 8- 8
1000
1200 { i
0 50 100 150 200 250
] iteration count
©
£
° 5 .
] Mother lattice of the current state of the chain (rotated frame)
3 T T
s 2
k]
5
3 15 . 4
& 2 X \ A
T A \ A A
© X , X
£ ¥ \ r
o osk ¥ \ X ¥ 7
/ ¥
e ¥
S o
}=J
2
£ 05
]
c 1 L
_% 0 2 4 6 8 10 12 14 16 18
S Dimension corresponding to the quasicrystal coordinates
E
[a]

Fig. 3. The set of plots here corresponds to the final relazed state of the chain shown in Figure 2. The arrangement of the
green (L) and red (S) balls clearly shows that the attractor configuration is the Fibonacci chain. The evolution of the total
Hamiltonian of the system is also displayed clearly demonstrating that the attractor configuration has the minimum energy.
The defect counter shows the absence of any forbidden configuration in the final state and hence is consistent with the fact that

the attractor is the Fibonacci chain.

m and n respectively, is a dyad and is defined as

Eanpn = Ea,, @Ep, =B, By, T, (13)

Unlike in the earlier sections, here the coordinate loca-
tions of the individual tiles are referenced from the left
(beginning of the chain), e.g. the subscript above identi-
fies the location of the o VC as the mth coordinate and so
on. The empire matrix &,,,3, is a dyadic product of two
vectors resulting in a tensor of rank two and dimensions
N x N.

The Hamiltonian operator can be then written as the
distributed sum of the symmetrized Empire matrices
Ea., g over all possible VCs and location pairs as follows:

1 &, Bn T (Sa 8 )T
po_ 1 mBn 1 Bn 14
H > 5 . (14

m,neX

where the sum is over all possible pairs of interacting
empires of the given chain. J# is an N x N symmet-
ric matrix whose trace gives the Hamiltonian Hq defined

by equation (12), i.e. Hq := Tr(5). Since the inter-
action free term of the Hamiltonian prescribed earlier
by equation (12) plays no discernible influence on the
evolution of the tiled chain into the Fibonacci configu-
ration, it is omitted from consideration here and only the
bilinear interaction terms are retained. Further, the inter-
action coefficients .J,, ,, that appear in the equation (12)
are set to unity. Among all possible chain configurations,
the Fibonacci chain corresponds to the configuration that
minimizes the trace Hg = Tr(.¢) as demonstrated by the
Monte Carlo simulations of Section 3.3.

4.2 Spectrum of the Hamiltonian 7 and theoretical
analysis

In this section we will establish a few key points:

— the matrix operator form of the Hamiltonian J# will
enable us to theoretically validate the results of the
simulations presented in the previous section,

— the construction of J# given by expression (14) is
correct and consistent with the construction of the
Hamiltonian Hq given by expression (12),
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Fig. 4. Cumulative eigenspectrum of .7 for different chain configurations clearly shows that the total energy given by Hq =
Tr() is minimized by the Fibonacci configuration. Length of the chain N = 8 (left) and N = 9 (right). In each case, all 2~

different configurations are considered.

— the matrix 7 encodes the energetics of differ-
ent chain configurations succinctly in the form of
empires, and

— spectral analysis of J# gives us the analytic solution
of the stable chain configuration which turns out to
be the Fibonacci configuration.

Further, it must be emphasized that since the geomet-
ric method allows us to construct empires of a given VC
for any chain configuration of long and short tiles, the
construction of .7 is generally applicable to any chain
configuration. Consequently, the analysis here demon-
strates that the Fibonacci state emerges naturally from
the model Hamiltonian as the stable solution.

4.2.1 Eigenspectrum of  for all chain configurations

The Hamiltonian 2# can be diagonalized as WDW™!
where the energy eigenvalues are given by the diagonal
matrix

Ay 0 0 Ei 0 0
p=| 0 o o 00 B 0
0 S A 0 En

and ¥ is a matrix whose columns are the eigenvectors
¥y corresponding to the eigenvalues A(,) = E,. By con-
vention, we have [Aq)| = |E1| > [Ag)| = |Ea| > [A\3)| =
|Es| > ... . Since ¢ is a real symmetric matrix, it has
real eigenvalues with Ay = Apin < 0 corresponding to
the ground state energy level £y = E,in.-

To illustrate the distinct energy levels of different con-
figurations of a chain of fixed length N, we calculate
the matrix Hamiltonian ¢ as prescribed by the expres-
sion (14) for every chain configuration. This is followed
by computing the eigenspectrum of J# for each of 2V
possible configurations. The cumulative eigenspectrum
corresponding to each such configuration is plotted in

Figure 4 for N = 8 and N = 9. This theoretical analysis
is consistent with the results of the simulation presented
in the previous section. In what follows here, we show
that the ground state prescribes the stable Fibonacci
configuration.

4.2.2 Eigenstates of J# prescribe stable chain
configuration

The results and analysis of Sections 3 and 4.2.1 demon-
strate that the stable chain configuration corresponds to
the state that minimizes Hq = Tr(5¢). Having obtained
this energetically favored configuration, we next demon-
strate how the eigenstates corresponding to this optimal
configuration prescribe the Fibonacci solution state. Of
course, we could simply read off the configuration with the
least energy and show that it is the Fibonacci state. How-
ever, we wish to clarify two subtle points in the following
analysis:

— the collection of empires corresponding to the mini-
mum energy state would be sufficient to recover the
full stable solution because .7 is built entirely and
solely from empires, and

— the Fibonacci configuration not only minimizes the
total energy as shown above but also minimizes the
ground state among all possible configurations.

The analysis presented below reveals that the chain has
the highest probability of being in the ground state.
This fact along with the second point above imply that
the Fibonacci configuration is the most probable ground
state of the system. So the presentation here incorporates
randomness as a key ingredient of the model.

It may be easily checked that the eigenvector corre-
sponding to Apin prescribes the distribution of L and
S tiles of a Fibonacci chain (up to our chosen sign
convention). This corroborates the observations made in
Section 3.3 earlier that the attractor of the chain is the
Fibonacci state. In order to obtain the Fibonacci chain
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Table 1. rank() vs N.

Length of chain, N rank(J¢)
5 2

8 4

13 8

21 12

34 21

55 33

89 55

144 88

233 144

exactly in terms of the signed unitary digits, —1 and
1 (and not only in their relative distribution of signs),
a superposition of the relevant eigenvectors of ¢ must
be considered. Thus, if one were to posit the Fibonacci
state as a quantum state, the Fibonacci state ¥ may be
written as a linear superposition of r + 1 eigenvectors cor-
responding to the r + 1 dominant eigenvalues (including
the zero eigenvalue) of the matrix J# whose rank isr < N,
resulting in the following ansatz,

7,01«": Z Crﬂﬂm

n<r+1

(15)

where the 1,s are the orthonormal eigenvectors of ¢
and ¢Yp = i\/iﬁ signt; (see Egs. (17) and (18)). The
Fibonacci state 1p is degenerate as manifested by the
appearance of & in the ansatz because the choice of the
labels L — —1 and S — +1 is arbitrary. Both g and
—1r are solutions of J|1) = E|¢) [54]. This underscores
the fact that it is the relative ordering of the signs of the
entries of 1, that essentially dictates the attractor config-
uration. Further, the matrix /7 is rank deficient because
the resulting truncated Fibonacci chain is not an exact
quasicrystal but an approzimant with periodicity equal to
N. Only in the infinite length chain, a full rank matrix
Hamiltonian can be obtained. Another interesting obser-
vation from Table 1 is that the rank(s¢) for a chain of
length N (corresponding to, say, Fibonacci word S,,) is
equal to the length of the previous Fibonacci word (Sy,—1)
except in some cases where the result is off by one due to
numerical imprecision in computing the diagonalization of
¢ owing to infinitesimally small numbers involved result-
ing in roundoff errors. This is likely due to the manner in
which the higher Fibonacci words may be generated recur-
sively like S,, = Sy —1Sm—2, Vm > 2 as mentioned earlier
in equation (2).

It may be insightful to provide an analogy with quan-
tum mechanical systems. The energy of the Fibonacci
state can be obtained as

(Wr|)YF) = By, = Z |C'IL|2ET’L7 (16)

where F,, is the nth eigenvalue of .7 and denotes the nth
energy eigenstate and the coefficient |c,|? is the probabil-
ity of being in state v,,. The latter demands the restriction
> s1len|? = 1. It may be interesting to note that if
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lcn|? = %, then the value of Ey, would be the ensem-
ble average of the energy eigenvalues prescribed by Hgq
whence all the energy eigenstates are equally probable,
ie. NEy, = >, E, = Tr(s) = Hq. This equiparti-
tion of energy eigenmodes is a signature of the principle
of eigenstate thermalization [55-57]. Further, while the
energy eigenstates may be equally probable in occur-
rence, their magnitudes are distinctly different because
|E1| > |E2| > |E3| > and so on, unless there is a degener-
acy of eigenstates. In the present case, as is shown below,
|E1| > |E;| Vi # 1 which guarantees the prominence of
the most relevant eigenstate ;. In the next section, we
will discuss if the condition of equiprobable eigenstates,
given above, holds or not in the large N thermodynamic
limit; and if not, what inference one may draw. In sum-
mary, two questions remain central to the inquiry in this

paper.

— How to find the attractor of the Hamiltonian model?

— Why does the attractor configuration coincide with
the Fibonacci chain as demonstrated by the simula-
tions of the previous section?

The answer to the first question is essential to justify the
observations of the simulations presented in Section 3.3.
The answer to the second question is important in order
to understand the physics of quasicrystal growth and the
origin of aperiodicity in physical systems.

4.2.3 How to find the attractor of the Hamiltonian?

Simulations of Section 3 prescribe a solution strategy
for finding the attractor configuration. Is this attractor
solution consistent with our quantum mechanical interpre-
tation of the system? The central idea to find the explicit
form of the solution of the final relaxed state of the Hamil-
tonian (12) is postulated as a superposition of eigenstates
(15). Recall the ansatz (15): the attractor configuration
is prescribed by signt; where 1, is the eigenvector cor-
responding to the most dominant energy eigenvalue Ej
and sign is the well known signum function. Since the
eigenvector corresponding to the most dominant eigen-
value prescribes the distribution of the tiles in the final
state up to the chosen sign convention, the exact form of
the final Fibonacci state of the chain can be obtained by
writing a linear combination of the first (r + 1) eigenvec-
tors with the associated coefficients as mentioned in the
expression (15). This will prescribe the correct exact form
of the attractor configuration provided

r+1
<Cr+l7cr+1> = Z ‘Ci‘2 =1,
i=1

where ¢, = (61,02,03, .. .,CT,CT_H)T. Importantly, this
attractor turns out to be the Fibonacci chain of length

r+1
N. Figure 5 presents the values of > |¢;|? for chains of
i=1
different lengths by considering only the first (r + 1) coef-
r+1
ficients. In all cases, the value of Y |¢;
i=1

|2 is very close to
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unity thereby validating the suitability of equation (15)
to find the exact solution of the final relaxed state of
the Hamiltonian. The solution obtained is the Fibonacci
chain.

The solution strategy mentioned above is explained here
through an example. Consider a chain of length N = 13.
Under similarity transformation, s = ¥DW¥~! and the
rank of s is r = 8. The attractor of this system is
obtained by considering the eigenvector

0.1962
—0.1962
0.2917
0.2403
—0.1941
0.5313
—0.1455
0.1455
0.3860
—0.2452
0.4366
0.0954
—0.0954

(17)

and using the following ansatz and solving for the coeffi-
cients ¢y,

1
-1
1
1
-1
_ -1 1
——s€igniY; = — | -1 | = Cnp, . 18
73 gn 753 ] n;g;rl (4 (18)
1
-1
1
1
-1
This gives us
c1 —0.8873
Co —0.0335
c3 0.0107
cy4 —0.1524
Cry1=|cs | = —0.2994
cg 0.2110
c7 0.1909
cs —0.1328
Co 0.0000

whence it may be checked that indeed

Finally, the attractor configuration i r is expressed as a
superposition of eigenstates (15) by using the coefficients
computed above. This solution corresponds to the sixth
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Fig. 5. This plot shows that the probability of the Fibonacci
state being the ground state is significantly higher than being
in any other excited state. It may be interesting to point out
that the probability of being in the ground state asymptotically
approaches the value of the golden ratio ¢. Further, it is shown
that the solution prescribed by equation (15) is consistent with
the fundamental axiom of probability, >, ., lei|* = 1.
Fibonacci word S5 which can be found using the algorith-
mic recursion S, = Sp,_15,_2, n>2, Sy =0,5 =01.
This paper presents a physical model of the emergence of
Fibonacci quasicrystal that can also be constructed algo-
rithmically as explained in several papers cited earlier.
The solution of s is an NP-hard optimization problem
that essentially involves finding the most probable ground
state energy [54,58,59].

4.2.4 Why is the attractor configuration given by the
Fibonacci chain?

While the ansatz allows us to find the attractor solu-
tion consistent with the postulates of quantum mechanics,
a natural question that follows is: why is the attrac-
tor configuration given by the Fibonacci chain? After
all, shouldn’t one expect the relaxation of the Hamilto-
nian reminisce thermalization resulting in equipartition of
energy among the different eigenstates? In fact, to the con-
trary, eigenstate thermalization would imply the absence
of an attractor solution as multiple final states would be
equally probable. So if one is looking for an attractor
as a solution, and consequently a model of quasicrystal
growth, thermalization is undesirable. So it works to our
advantage that the Hamiltonian 5# does not thermalize
to equiprobable eigenstates.

In fact, let us rewrite the spectral decomposition given
by equation (16) as

Eﬁ’F = Z |Cn‘2E = Z |C(m)|2E(m)7
n (m)

(19)

where by convention |¢)|? > |e@)? > Je@)|* > ... and
E(my € p(J€) (spectrum of J#) is such that its coef-
ficient is c(;). In other words, the second equality is
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Fig. 6. Top: energy eigen values F1 and F2 of the Hamiltonian
S are plotted along with the trace of the Hamiltonian which
gives the total energy of the system. Clearly, |E1| > |FE-|.
Bottom: this plot shows that the relative error in the approx-
imation of Tr(s¢) by E1 decreases as N increases and is
practically miniscule. The plots show that for moderately large
N, Tr(€) can be well approximated by E;.

simply a re-arrangement of the summands in Y |c,|*Ep

n
that obeys the above inequalities and sorts the energy
eigenstates in decreasing order of the probability of find-
ing the Fibonacci chain in that state. It turns out that
(1) = ¢ and consequently E(;y = Ey. More importantly,
the Hamiltonian . is such that |c(1)|* > |c()|? as shown
clearly in Figure 5. In Section 3, we have presented results
of numerical experiments that established that of all the
possible configurations, it is the Fibonacci configuration
that minimizes the total Hamiltonian Hg = T'r(.7). Note
that practically almost all of the total energy of the sys-
tem is concentrated in the ground state as illustrated by
Figure 6. In essence, since £y — Hqg as N becomes large
enough, it follows that the Fibonacci configuration not
only minimizes Hg among all possible chain configura-
tions but also minimizes the ground state energy among
all possible chain configurations. This establishes that the
Fibonacci chain is the most probable ground state of the
Hamiltonian . and by a big margin (see Fig. 5).

It must be emphasized here that the ability of the
empires, through simple non-local interactions as pre-
scribed by the r.h.s. of equations (12) and (14), to form
the final Fibonacci state of the chain renders the empires
as the generators of the Fibonacci chain and fundamental
elements in a model of aperiodic order. It can be shown
that the simple nearest neighbor Ising model does not gen-
erate the Fibonacci chain.® Essentially, it is the non-local
scope of the empires that is the quintessential element of
the model.

6 https://www.youtube.com/watch?v=N85_aDD_lUI
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4.3 Symmetries and comparison with the Ising model

The most fundamental symmetry in crystalline struc-
tures is translation symmetry. This symmetry is absent
in quasicrystalline structures. In the current case under
investigation here, the precise algebraic form in which
a translation asymmetry pertaining to the Fibonacci
quasicrystal may be conceptualized is illustrated by equa-
tions (9), (10) and (11). These empires collectively charac-
terize all forbidden configurations of the Fibonacci chain.
The Hamiltonian 7 encodes the exact physical mecha-
nism which manifests this translation asymmetry through
the interaction of the empires.

Of course, this beckons a natural comparison with other
lattice models especially with the most widely-known
nearest neighbor Ising Hamiltonian. At the outset, it must
be clarified that the Monte Carlo simulation of the nearest
neighbor Ising Hamiltonian, that relies entirely on local
spin—spin interactions, does not generate the Fibonacci
chain or any one dimensional quasicrystal. This clearly
underscores the necessary role of non-local interactions in
a model of quasicrystal growth.

The definition of the empires (as illustrated by the
examples (5) and (6), and the top and bottom figures
on the left panel of Fig. 3) imply that the inner product
Imn(BEa,, | Eq,) in equation (12) is essentially equivalent
to SO, T oSSy = >y J}, w57 because s7* = 57" = s;
where s; labels the ith tile of the chain under consider-
ation. Hence, one may attempt to devise an equivalent
zero-field lattice model of the form

1 Al
Hy === 37 Y Tasl'st

m,neX i=1

1 Al
=N Z Zan_rnsisi

mneX i=1

1 N

m,neX i=1

(20)

that generates the Fibonacci chain. Here s; = £1 and
Jimn = I}, 18 a vector for every m and n with non-zero
unit entries at locations where the effect of the spins (s?)

;
must be accounted for. Note that in the above equation
we are no longer using the Einstein’s summation conven-
tion. A careful observation of the interaction terms in the
Hamiltonian (12) and the definition of the empire vec-
tors reveals the formal similarities with the Hamiltonian
(20). However, such an attempt to engineer the coupling
constants does not encode the information of the pro-
jection from a higher dimensional space. Moreover, there
does not appear a simple way to construct the coupling
constants J), , and hence using model (20) to perform
the analysis and the simulations, instead of the equiva-
lent models (12) and (14), would be very challenging. On
the other hand, the empires provide us with a tool to
model non-local interactions very naturally and share a
geometrical significance as the generators of the Fibonacci

chain because they are derived by projection from a higher
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dimension which has translation symmetry. In any case
the model (12) presented here is clearly not an Ising model
for reasons mentioned above.

Like the nearest neighbor Ising model, the Hamiltonian
Hg, is invariant under spin inversion as mentioned earlier.
This is so because the inner product between the empire
vectors is invariant under spin inversion. Eg., consider
E,,, = (s15283---sn) and Eg, = (s{s5ss---s%y) where
si,s; = —1,1 or 0 depending on x; = L, S or if it is an
unforced tile. Clearly, the spin inversion s; — —s; and
s, — —s}, which is essentially flipping the labels of L and
S, preserves (E,, |Eg,).

However, unlike the zero external field nearest neigh-
bor Ising model in one-dimension or the nearest neighbor
Ising model in a square lattice in two-dimensions, the
zero-external field (B, ,; = 0) partition function Zg =
Tr(e=PH2) based on equation (12), and thereby the free
energy density, are not invariant under sign inversion of
the coupling coeflicients J;;. This is because the non-
zero entries of the interacting empire vectors change sign
concurrently. This is further illustrated by the equivalent
model (20). Therefore, the thermodynamic properties of
the model presented here are not the same under the
reversal of sign of the coupling constants J; ;.

5 Summary of main results
The main contributions are summarized below.

— Algebraic forms of the empires of the VCs of
a Fibonacci chain are provided. The closed form
expressions are verified in agreement with earlier
known methods of computing empires of VCs using
geometric and algorithmic methods. These algebraic
forms enable us to know the exact manner by which
the translation symmetry is absent in a Fibonacci
chain.

— A Hamiltonian is constructed using the empires
mentioned above and Monte Carlo simulations are
performed. The simulations show that the Fibonacci
chain is an attractor of the model.

— The Hamiltonian is promoted to a matrix operator
form and a spectral analysis is performed to find the
relevant eigenstates. An ansatz is provided to find
the attractor configuration analytically. It is verified
to be true and consistent for a chain of any finite
length. A quantum mechanical interpretation reveals
that the Fibonacci chain is the most probable ground
state of the system and hence provides a theoreti-
cal explanation of the attractor configuration. The
theoretical analysis shows that the Fibonacci config-
uration not only minimizes the total energy of the
system but also minimizes the ground state of the
system.

We have devised a matrix Hamiltonian model of the
Fibonacci quasicrystal. This approach may lay the
foundation for formulating similar matrix models of more
complex higher dimensional quasicrystals.
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6 Future work

Firstly, there seems a formative correspondence between
the empire Hamiltonian presented in this paper and the
well known spin-1 Ising model with the spin-1 angu-
lar momentum matrices L*, LY, L*, each of dimension
3 x 3, and with diagonal entries of L* as 1,0,—1. [60,
61]. This similarity stems from the use of ternary ele-
ments {1, —1,0}. One may propose the following zero-field
Hamiltonian

) — _

S T L

a={z,y,z} mneX

(21)

as a non-local generalization of the spin-1 nearest neigh-
bor Hamiltonian. Here, a,b = 1,2,3 correspond to z,y, 2
and J,, , are the non-local coupling constants between
lattice sites m and n. By defining £2 := I®™"1 @ L ®
I®N-m g =z y, 2z, as 3V x 3N matrices and appropri-
ately engineering .J,, ,,, one may investigate the correspon-
dence between ) and J# given by equation (14). Here
I is a 3 x 3 identity matrix.

Secondly, the one-dimensional model described here
may be extended to a two dimensional model of quasicrys-
tal by relaxing a network of chains (fibers). The network
of chains may be relaxed using a Monte Carlo simulation
under specific topological constraints to obtain a matrix
model of a two dimensional quasicrystal. A Fibonacci
topological network based on a quantum string-net Hamil-
tonian has been studied recently [62].
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