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Matrix Factorizations and Applications

LU Factorization        ( where A is an square matrix)

Consider the following set of equations:
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Ax=b

with A (n x n), x (n x 1) and b (n x 1) defined as usual



LU Factorization Factorize A in Ax=b as  A=LU

Objective: Factorize A=LU where L is a matrix in the lower-triangular form and U is a
matrix in the upper-triangular form as given below.
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It turns out that L is the matrix of the multipliers mjk of the Gauss Elimination method 
with the main diagonal as  1, ……., 1 and with U as the matrix of the triangular system 
at the end of the Gauss Elimination. Details of how to do this are described later.



Example of LU Factorization
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Why do LU Factorization? 

Since Ax=b implies    LUx=b
or Ly=b with y=Ux

Knowing the factors L and U, we 
can first solve for y in Ly=b by 
forward substitution

We then solve for x in Ux=y by 
backward substitution

y
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Why do LU Factorization? 

• Gauss Elimination typically requires about 2n3/3 operations

• The LU decomposition requires n3/3 operations while solving Lux=b requires 
only about n2 operations

• Therefore the LU decomposition method generally requires fewer operations 
than the Gauss Elimination method.

• One more advantage of the LU decomposition method is that, given a fixed A, 
changing b can give us the different solutions much more efficiently than Gauss 
Elimination. (Why? … Because we need to do the LU decomposition only once!)

Solving n equations for n unknowns



When can one do LU decomposition for a matrix A? 

For a non-singular matrix, one can always reorder the
rows to get a matrix for which one can do LU
factorization.

The objective of the reordering is to make the diagonal
coefficients non-zero. Once this is done, it would be
possible to do the LU factorization.

The LU factorization is unique if we ensure that the
diagonal term of the L matrix is all 1’s
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How to do LU decomposition
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Reorder rows to
ensure non-zero
diagonal terms

There are several approaches to find L and U
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LU Factorization Example  eeExplicitly solve for the uijs and the mijs

1

2

3

3 5 2 8

0 8 2 7

6 2 8 26

x

x

x

    
         
    
    

1 2 3

1
: 4, 1 shown lat

2
r; eSolution x x x   

11 12 13

21 22 23

31 32 33

3 5 2 1 0 0

0 8 2 1 0 0

6 2 8 1 0 0
jk

u u u

A a m u u

m m u

    
             
    
    

11 11 12 12 13 13

21 21 11 22 21 12 22 23 21 13 23

21 22 23

31 31 11 32 31 12 32 22 33 31 13 32 23 33

3 5 2

0 8 2

0 8 2

6 2

a u a u a u

a m u a m u u a m u u

m u u

a m u a m u m u a m u m u u

m

     
                      

       

  
                      

       

 31 32 33

31 32 33

(3) 2(5) (8) 2(2) 1(2)

2 1 6

m u

m m u

     
   

1 0 0 3 5 2

0 1 0 0 8 2

2 1 1 0 0 6

A

L U

  
     
    



1 0 0 ⋅ ⋅ 0
𝑚ଶଵ 1 0 ⋅ ⋅ 0

⋅ ⋅ ⋅    0
⋅ ⋅  ⋅  ⋅
⋅ ⋅   ⋅ ⋅

𝑚௡ଵ 𝑚௡ଶ ⋅ ⋅ 𝑚௡ ௡ିଵ 1

11 12 1

22 2

... ...

0 ... ...

0 ... ... ... ...

... ... ... ... ...

0 0 ... ...

n

n

nn

u u u

u u

u

 
 
 
 
 
 
 
 

11 12 1

21 22 2

1 2

... ...

... ...

... ... ... ... ...

... ... ... ... ...

... ...

n

n

n n nn

a a a

a a a

a a a

 
 
 
 
 
 
 
 

Reorder rows to
ensure non-zero
diagonal terms
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LU Factorization Example Following a Gauss Elimination type strategy
(from Prof. Amrik Sen’s notes)

1 0     0     0 1     1     0     3
2    1     0     0 0    -1    -1   -5
3    4     1     0 0     0     3   13         
-1  -3     0 1           0     0     0 -13

UL

1 0     0     0 1     1     0     3
0    1     0     0 2     1    -1     1
0    0     1     0 3    -1    -1     2           
0    0     0     1           -1     2     3    -1

I A

1 0     0     0 1     1     0     3
2    1     0     0 0    -1    -1   -5
3    0     1     0 0    -4    -1   -7          
-1    0     0     1           0     3     3     2

E2 -2E1 m21=2
E3 -3E1 m31=3
E4 –(-1)E1 m41=-1

E3 -4E2 m32=4
E4 –(-3)E2 m42=-3 m43=0



LU Factorization Example Following a Gauss Elimination type strategy
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Solving a set of Linear Equations using LU Factorization
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Solving a set of Linear Equations using LU Factorization (Prof. Amrik Sen’s example)
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Orthogonal Basis and Gram-Schmidt Orthogonalization

Two vectors      and      are orthogonal if and only if

The vectors                                           are orthonormal if and only if 
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Properties of orthonormal vectors
1. Orthonormal vectors are (automatically) 

linearly independent
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form a basis in Rn
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Properties of ୄ the Orthogonal Complement of V :

Consider a subspace ௡ Then, we have the following 
important results about ୄ, the orthogonal complement of V
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Example:

Consider the subspace V=Im(A) of 4 where A=                 . Find      for     
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Solution: Recall that the column space of is It can be easily checked
that the column vectors of are orthogonal by taking their scalar product. Thus
we can construct an orthonormal basis of The basis vectors are -1 2,u u
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Why are orthonormal basis vectors useful? 

1. We know that if we have some basis                          of an n-dimensional vector 
space then any vector can be written as                                                      
(i.e. as a linear combination of the basis vectors). However, there is no first-
principles or convenient way of finding the unique coefficients ଵ ଶ ௡

except by explicit guesswork calculations. On the contrary, if we do have an 
orthonormal basis set                           then any vector can be written as a linear 
combination of this orthonormal basis set as

where the coefficients                                               are uniquely determined. 

2.   Orthogonality guarantees linear independence.
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Why are orthogonal transformations useful? 

1. Orthogonal transformations are metric preserving transformations, i.e. if  
௡ ௡ is orthogonal, then         ௡

(length preserving transformation)

(Note that if is an orthogonal transformation, then we say that 
is an orthogonal matrix. For such an A, we have that ATA=I or A-1=AT) 

2. Orthogonal transformations are angle preserving transformations for orthogonal  

vectors. 

For example, if             , then 
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Orthogonal Transformation:  A linear transformation T : V → V  i ௡ that preserves 
the inner product. For each pair u, v of elements of V, we will then have -

, ,u v Tu Tv


