Solving Systems of Linear ODEs with Complex Eigenvalues

We present here the theory for a 2×2 system. (This can be generalized to a $n \times n$ system)

$$\vec{X}' = A_{2 \times 2} \vec{X}$$

where the eigenvalues are $\lambda_{1,2} = \alpha \pm i\beta$

and the eigenvectors are \vec{v}_1 , $\vec{v}_2 = \vec{p} \pm i\vec{q}$

Note that complex eigenvalues and eigenvectors always appear in pairs

We can then write the full solution as,

$$\vec{x}(t) = k_1 e^{\lambda_1 t} \vec{v}_1 + k_2 e^{\lambda_2 t} \vec{v}_2$$

However, since the λs and the $\vec{v} s$ are complex, we need to break up the solution space into real and imaginary parts to study the trajectories on the phase plane

To do this, we rewrite $\vec{x}(t)$ as –

$$\vec{x}(t) = \vec{x}_{re}(t) + i\vec{x}_{im}(t)$$

To see how this can be done, substitute λ_1 , λ_2 , \vec{v}_1 , \vec{v}_2 in $\vec{x}(t) = k_1 e^{\lambda_1 t} \vec{v}_1 + k_2 e^{\lambda_2 t} \vec{v}_2$

Then,

$$\vec{x}(t) = k_1 e^{(\alpha + i\beta)t} (\vec{p} + i\vec{q}) + k_2 e^{(\alpha - i\beta)t} (\vec{p} - i\vec{q})$$

$$= k_1 e^{\alpha t} e^{i\beta t} (\vec{p} + i\vec{q}) + k_2 e^{\alpha t} e^{-i\beta t} (\vec{p} - i\vec{q})$$

$$= c_1 e^{\alpha t} (\vec{p} \cos \beta t - \vec{q} \sin \beta t) + c_2 i e^{\alpha t} (\vec{p} \sin \beta t + \vec{q} \cos \beta t)$$

$$\vec{x}_{re}(t)$$

$$\vec{x}_{im}(t)$$

$$e^{i\beta t} = Cos\beta t + iSin\beta t$$

$$e^{-i\beta t} = Cos\beta t - iSin\beta t$$

$$c_1 = k_1 + k_2$$

$$c_2 = k_1 - k_2$$

Therefore, $\vec{x}(t) = c_1 \vec{x}_{re}(t) + c_2 \vec{x}_{im}(t)$

Note that c_2i is rewritten as the new constant c_2 .

We can do that as $i = \sqrt{-1}$ is also a constant

Question: Are $\vec{x}_{re}(t)$ and $\vec{x}_{im}(t)$ linearly independent solutions of $\vec{X}' = A\vec{X}$?

To check this, we substitute $\vec{x}(t) = \vec{x}_{re}(t) + i\vec{x}_{im}(t)$ in $\vec{X}' = A\vec{X}$

This gives,
$$\vec{x}'(t) = \vec{x}_{re}'(t) + i\vec{x}_{im}'(t) = A\vec{x}_{re}(t) + iA\vec{x}_{im}(t)$$

Equating the real and the imaginary parts above, we get that both $\vec{x}_{re}(t)$ and $\vec{x}_{im}(t)$ satisfy the ODE, i.e. $\vec{x}_{re}'(t) = A\vec{x}_{re}(t)$ and $\vec{x}_{im}'(t) = A\vec{x}_{im}(t)$

Since $\vec{X}' = A\vec{X}$ is a 2 × 2 system, the two solutions $\vec{x}_{re}(t)$ and $\vec{x}_{im}(t)$ suffice and can be studied together on the phase-plane!

Example: Solve
$$\vec{X}' = A\vec{X}$$
 for $A = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix}$

Eigenvalues of A: $\lambda_{1,2} = 5 \pm 2i$

Eigenvectors are:
$$\vec{v}_{1,2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \pm i \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$

The corresponding general solution is

$$\vec{x}(t) = c_1 \vec{x}_{re}(t) + c_2 \vec{x}_{im}(t)$$

$$= e^{5t} \begin{cases} c_1 \begin{pmatrix} \cos 2t \\ \cos 2t + 2\sin 2t \end{pmatrix} \\ +c_2 \begin{pmatrix} \sin 2t \\ \sin 2t - 2\cos 2t \end{pmatrix} \end{cases}$$

where c_1 and c_2 are real constants

Use x' = 6x - y for Phase-Plane Trajectory y' = 5x + 4y

Phase-plane Trajectory for $\lambda_{1,2} = 5 \pm 2i$ (Note the unstable equilibrium at the origin)

$$\vec{X}' = A\vec{X}$$
 for $A = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix}$ $x' = 6x - y$
 $y' = 5x + 4y$

For
$$v - nullcline$$
,
 $x' = 0 \Rightarrow y = 6x$

For
$$h$$
 – $nullcline$,

$$y' = 0 \Rightarrow y = -\frac{5}{4}x$$

Example: Solve
$$\vec{X}' = A\vec{X} = \begin{pmatrix} 4 & -5 \\ 5 & -4 \end{pmatrix} \vec{X}$$

Eigenvalues:
$$|A - \lambda I| = 0 \implies \lambda^2 + 9 = 0 \implies \lambda_{1,2} = \pm 3i$$

Eigenvectors:
$$\vec{v}_{1,2} = \begin{pmatrix} 5 \\ 4 \mp 3i \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \pm i \begin{pmatrix} 0 \\ -3 \end{pmatrix} = p + iq \text{ where } p = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \quad q = \begin{pmatrix} 0 \\ -3 \end{pmatrix}$$

Therefore,
$$\vec{x}_{re}(t) = \cos 3t \begin{pmatrix} 5 \\ 4 \end{pmatrix} - \sin 3t \begin{pmatrix} 0 \\ -3 \end{pmatrix}$$

 $\vec{x}_{im}(t) = \sin 3t \begin{pmatrix} 5 \\ 4 \end{pmatrix} + \cos 3t \begin{pmatrix} 0 \\ -3 \end{pmatrix}$

General Solution:
$$\vec{x} = c_1 \vec{x}_{re}(t) + c_2 \vec{x}_{im}(t)$$

= $c_1 \binom{5\cos 3t}{4\cos 3t + 3\sin 3t} + c_2 \binom{5\sin 3t}{4\sin 3t - 3\cos 3t}$

Phase Portrait

- * Note that the trajectories are really "Periodic Orbits" around the origin., i.e. a solution returns to the original point.
- * The stable equilibrium at the origin neither attracts nor repels
- * We see this kind of behavior when the roots are purely imaginary.

Linear Independence of Functions over an interval *I*

Suppose $f_1(t), f_2(t), \dots, f_n(t)$ are functions of t on some interval I, such that they can be differentiated *n* times on *I*.

We can then set up the following n equations in n unknowns using n unknown constants c_1 , c_2 ,, c_n by successive differentiation for every t in I.

$$c_{1}f_{1}(t) + c_{2}f_{2}(t) + \dots + c_{n}f_{n}(t) = 0$$

$$c_{1}f_{1}'(t) + c_{2}f_{2}'(t) + \dots + c_{n}f_{n}'(t) = 0$$
.....
$$c_{1}f_{1}^{(n-1)}(t) + c_{2}f_{2}^{(n-1)}(t) + \dots + c_{n}f_{n}^{(n-1)}(t) = 0$$

We know that if the determinant of the matrix coefficients of the c_i 's is not 0, then the only solution is the trivial one $c_1 = c_2 = \cdots \dots = c_n = 0$ and the functions $f_1(t), f_2(t), \dots, f_n(t)$ are independent over the interval I.

$$W[f_1, f_2,, f_n](t) \equiv \begin{vmatrix} f_1(t) & f_2(t) & & f_4(t) \\ f_1'(t) & f_2'(t) & & f_2'(t) \\ & & & \\ f_1^{(n-1)}(t) & f_2^{(n-1)}(t) & & f_n^{(n-1)}(t) \end{vmatrix} \qquad \begin{array}{c} \text{Wronskian of Functions} \\ f_1(t), f_2(t), f_n(t) \\ \text{on } I \\ \end{array}$$

$$f_1(t), f_2(t), \dots \dots f_n(t)$$

on I

The Wronskian and Linear Independence Theorem

If $W[f_1, f_2, f_n](t) \neq 0$ for all t on the interval I, where f_1, f_2, f_n are defined then $\{f_1, f_2, f_n\}$ is a set of linearly independent functions.

Note that if $\{f_1, f_2, \dots, f_n\}$ is linearly dependent on I, then $W[f_1, f_2, \dots, f_n](t) \equiv 0$ on I. So to show independence, we only need to find one $t_0 \in I$ such that $W[f_1, f_2, \dots, f_n](t_0) \neq 0$

 \Rightarrow linear independence at one point in I implies independence over I

Example
$$\{t^2 + 1, t^2 - 1, 2t + 5\}$$

$$W(t) = \begin{vmatrix} t^2 + 1 & t^2 - 1 & 2t + 5 \\ 2t & 2t & 2 \\ 2 & 2 & 0 \end{vmatrix} = -8 \neq 0$$
Therefore, $\{t^2 + 1, t^2 - 1, 2t + 5\}$ is linearly independent over t in $(-\infty, \infty)$

Important: The Converse Is Not True!

Suppose that the Wronskian $W[f_1, f_2, f_n](t) = 0$ over an entire interval I, where f_1, f_2, f_n are defined on I. Does this imply that $\{f_1, f_2, f_n\}$ is linearly dependent on I? **NO**

$$\begin{aligned}
f_1(t) &= t^3 & t \ge 0 \\
&= 0 & t < 0
\end{aligned} \qquad \begin{aligned}
f_2(t) &= 0 & t \ge 0 \\
&= t^3 & t < 0
\end{aligned} \qquad \begin{aligned}
W(f_1, f_2) &= \begin{vmatrix} f_1 & f_2 \\ f_1' & f_2' \end{vmatrix} = 0
\end{aligned}$$

However, it is directly evident that f_1 can never be a scalar multiple of f_2 , so they are linearly independent and are not linearly dependent!

Using the Wronskian to Establish Linear Independence for the Solutions of a Linear ODE

If $\vec{x}_1, \dots, \vec{x}_n$ solve a homogenous linear ODE system and if there exists any t for which the Wronskian $W(\vec{x}_1, \dots, \vec{x}_n; t) \neq 0$ then $\vec{x}_1, \dots, \vec{x}_n$ are linearly independent solutions.

Here the Wronskian $W(\vec{x}_1, \dots, \vec{x}_n; t)$ is defined as -

$$W(\vec{x}_{1},....,\vec{x}_{n};t) = \begin{vmatrix} | & ... & | \\ \vec{x}_{1}(t) & ... & \vec{x}_{n}(t) \\ | & ... & | \end{vmatrix}$$

$$e x = 3x - 2y$$

$$y' = x$$

$$z' = -x + y + 3$$

$$\vec{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Example
$$x' = 3x - 2y$$

 $y' = x$
 $z' = -x + y + 3z$ $\Rightarrow \overrightarrow{X'} = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 0 \\ -1 & 1 & 3 \end{pmatrix} \overrightarrow{X}$ $\overrightarrow{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $\overrightarrow{x}_1 = \begin{pmatrix} 0 \\ 0 \\ e^{3t} \end{pmatrix}; \ \overrightarrow{x}_2 = \begin{pmatrix} 2e^{2t} \\ e^{2t} \\ e^{2t} \end{pmatrix}; \ \overrightarrow{x}_3 = \begin{pmatrix} e^t \\ e^t \\ 0 \end{pmatrix}$

Solutions

We have three of them but

are they independent?

$$W(\vec{x}_1, \vec{x}_2, \vec{x}_3; t) = \begin{vmatrix} 0 & 2e^{2t} & e^t \\ 0 & e^{2t} & e^t \\ e^{3t} & e^{2t} & 0 \end{vmatrix} = 2e^{2t}e^{3t}e^t - e^te^{3t}e^{2t} = e^{6t} \neq 0$$

 $\Rightarrow \vec{x}_1(t), \vec{x}_2(t), \vec{x}_3(t)$ are linearly independent for any $t \in (-\infty, \infty)$

Therefore, the solution to this homogenous ODE is

$$\vec{X} = c_1 \vec{x}_1 + c_2 \vec{x}_2 + c_3 \vec{x}_3 = c_1 \begin{pmatrix} 0 \\ 0 \\ e^{3t} \end{pmatrix} + c_2 \begin{pmatrix} e^t \\ e^t \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} 2e^{2t} \\ e^{2t} \\ e^{2t} \end{pmatrix} = \begin{pmatrix} c_2 e^t + c_3 (2)e^{2t} \\ c_2 e^t + c_3 e^{2t} \\ c_1 e^{3t} + c_3 e^{2t} \end{pmatrix}$$

$$x(t) = c_2 e^t + 2c_3 e^{2t}$$
 $y(t) = c_2 e^t + c_3 e^{2t}$
 $z(t) = c_1 e^{3t} + c_3 e^{2t}$

It would be interesting to solve this system using another approach! See the next slide!

$$x' = 3x - 2y$$

$$y' = x$$

$$z' = -x + y + 3z$$

$$c_2e^t + c_3e^2$$

$$c_2e^t + c_3e^2$$

$$v(t) = c_2 e^t +$$

$$z(t) = c_1 e^{3t} + c_3 e^{3t}$$

$$z''' - 3z'' - 4z' + 12z = 0$$

$$z''' - 3z'' - 4z' + 12z = 0$$
Solution: $z(t) = c_1 e^{3t} + (c_x e^{-2t}) + c_3 e^{2t}$

Missing Term

Similarly, the first two equations can be manipulated to get

$$y'' - 3y' + 2y = 0$$

Solution:
$$y(t) = c_2 e^t + c_3 e^{2t}$$

Now differentiate y(t) to get x(t)

$$x(t) = y'(t)$$

Solution:
$$x(t) = c_2 e^t + 2c_3 e^{2t}$$

Consider the solution
$$z(t) = k_1 e^{3t} + k_2 e^{-2t} + k_3 e^{2t}$$
 of $z''' - 3z'' - 4z' + 12z = 0$

Substituting this in
$$z' = -x + y + 3z$$
 we get $5k_2e^{-2t} + k_3e^{2t} = -x + y$

Note that, we also got
$$x(t) = c_2 e^t + 2c_3 e^{2t}$$
, $y(t) = c_2 e^t + c_3 e^{2t}$ (see previous slide)

$$\Rightarrow \qquad -x + y = -c_3 e^{2t}$$

$$5k_2e^{-2t} + k_3e^{2t} = -c_3e^{2t}$$

 $\Rightarrow k_1$ can be arbitrarily chosen (i.e. $k_1 = c_1$ as earlier), but k_2 and k_3 must satisfy the above equation

Comparing the coefficients of e^{-2t} and e^{2t} in the LHS and RHS of the above, we get $k_2=0, k_3=-c_3$

Therefore,
$$z(t) = c_1 e^{3t} + c_3 e^{2t}$$

Same solution as before!

So, "All Roads Do Indeed Lead to Rome"