Solving Systems of Linear ODEs with Complex Eigenvalues

We present here the theory for a 2 X 2 system. (This can be generalized
to an X n system)

X' = Azxz)_()
where the eigenvaluesare A;,=a = if

and the eigenvectorsare ¥y, U, = p + ig

Note that complex eigenvalues and eigenvectors always appear in pairs




We can then write the full solution as,
f(t) = klelltﬁl —+ kzelztﬁz

However, since the A s and the v s are complex, we need to break up the
solution space into real and imaginary parts to study the trajectories on the

phase plane
To do this, we rewrite x(t) as —

f(t) = fre (t) + ifim(t)



To see how this can be done, substitute 1;, 1,, U1, ¥, in X(t) = kye’1tv; + kye?2tv,

Then, } o o e'Pt = Cospft + iSinft
X(t) = ke (p+iq) + ke (p—iq) e~iBt = Cosft — iSinft
=k,ee” (p+ig) + ke e (p—iq) ci =k +k,
=ce”(pCospt—GsSinpt) + c,ie” (pSingt +GCospt) C2 = ki — ko
\ ) \ )
| |
Xre (t) Xim (t)
. N R Note that ¢, is rewritten as the new
Therefore, X(t) =c X, (t)+Cc,X,, (t) constant c,.

constant

We can do thatasi = Vv—1isalso a




Question: Are %.,(t) and #;,,(t) linearly independent solutions of X'= AX ?

To check this, we substitute %(t) = %, (t) + i%;,(t) in X'= AX
This gives, X' (t) = X, (t) + (X, (t) = AX,o (t) + iAX;y, (T)

e R

Equating the real and the imaginary parts above, we get that both x,.,(t) and
Xim (t) satisfy the ODE, i.e. X,.,' (t)= AX,..(t) and x;,,,"(t)= AX;,,, (t)

Since X'= AX isa 2 X 2 system, the two solutions %, (t) and %;,,, (t) suffice
and can be studied together on the phase-plane!



> > 6 —1 x' =6x—y :
: I = — Use for Phase-Plane Trajectory
Example: Solve X' = AX for A (5 4) Y = 5x + 4y
y

Eigenvaluesof A:  A;, =5+ 2i

Eigenvectors are: ¥y , = (1) ti (_g)

The corresponding general solution is 4 » W e
~1 /4§
f(t) — lere(t) + Cz-’_c)im(t) |
( . ( Cos2t ) ) =
_ o5t) " \Cos2t +2Sin2t) | _3*.:
tc, ( | Sin2t )
\ Sin2t — 2Cos2t/ )

Phase-plane Trajectory for A, , = 5 + 2i

where ¢; and ¢, are real constants (Note the unstable equilibrium at the origin)
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Example: Solve X' = AX = (5 4 X

Eigenvalues: |[A—AI|=0 = 2A°4+9=0 = Ao, = 13i

Eigenvectors: v, , = (4 ¢5 3i)=(451) T (_g):p +1iq wherep = (Z) q= (_%)

Therefore,  X,,(t) = cos3t (i) — sin 3t (_g)
Xim(t) = sin 3t (i) + cos 3t (_g)

General Solution: X = ¢; X, (t) + X, (t)

_ e ( 5cos 3t )+ - ( 5sin 3t )
1\4 cos 3t + 3 sin 3t 2\4 sin 3t — 3 cos 3t



Phase Portrait

* Note that the trajectories
are really “Periodic Orbits”
around the origin., i.e. a
solution returns to the
original point.

* The stable equilibrium at
the origin neither attracts
nor repels

* We see this kind of
behavior when the roots
are purely imaginary.



Linear Independence of Functions over an interval I

Suppose f;(t), f>(t), ........ [, (t) are functions of t on some interval I, such that they can be differentiated
n times on [.
We can then set up the following n equations in n unknowns using n unknown constants ¢4, ¢, ... ... , Cp, by

successive differentiation for every tin I.

¢, f,(t)+C, f,(t) +.......
¢, f/ (@) +c, f (t)+.....

W [ fl’ f21----, fn](t) —

f, (t)
f,' ()

+c f (t)=0
+c f/(t)=0

f, (t)
f, (t)

+c, F0 () =0

f, (1)

We know that if the determinant of the matrix
coefficients of the c¢/s is not 0, then the only
solution is the trivialone ¢y = ¢, =-...=¢, =0
and the functions f;(t), fo(t),........ f,(t) are
independent over the interval I.

Wronskian of Functions

f1(6), f2(6), e et fr (D)

onl



The Wronskian and Linear Independence Theorem

If WIf1, fo, ... [»](t)# O for all t on the interval I, where f3, f5, .... f,, are defined
then {f1, f>, .... f,} is a set of linearly independent functions.

Note that if {f{, f>, .... f,,} is linearly dependent on I , then W |fy, f5, .... [,](t)= 0
on I . So to show independence, we only need to find one t; € I such that

WIf1, f2r oo ful(to)# O

= linear independence at one point in I implies independence over |

Example {t?+1,t2—1,2t+ 5}

2 2
t+1 t°-1 2t+5 Therefore, {t* + 1,t% — 1,2t +
W(t)=| 2t 2t 2 |=-8=0 5} is linearly independent over

. 0 tin (=0, )




Important: The Converse Is Not True!

Suppose that the Wronskian W |f3, f>, .... f,,](t) = 0 over an entire interval I, where fi, f5, ... f,,
are defined on I. Does this imply that {f3, f>, .... f;,} is linearly dependent on I? NO

f(t)=t> t>0 f,t)=0 t>0
=0 t<0 =t> t<0

fl 2
/

W(fl’ fz): f
1

However, it is directly evident that f;can never be a scalar multiple of f,, so they
are linearly independent and are not linearly dependent!



Using the Wronskian to Establish Linear Independence for the Solutions
of a Linear ODE

If X, ..... X, solve a homogenous linear ODE system and if there exists any t for
which the Wronskian W (x4, ..... X,;; t) # 0 then Xy, ..... X, are linearly
independent solutions.

Here the Wronskian W (X4, .....X,; t) is defined as -

o
W (X, X,5t) = (X (1) oo X, (1)
o




Example X' =3x-2y 3 -2 0 X 0 22t gt

y!:X =>X’: 1 0 0(X X = y )_(’1: O ,)—('2: e2t ’)—(»3: et

' =—X+ y-|-32 -1 1 3 Z et 2t 0

Solutions
We have three of them
but
0 2% ¢ are they independent?
W (_»1’ )_(21 )zg;t) =10 QZt et = 262t93tet _ete3te2t = e6t ~+0

e3t e2t

= X1(t), X(t), x3(t) are linearly independent for any t € (—oo, )



Therefore, the solution to 0 e' 2e”" c,e' +c,(2)e”

this homogenous ODE is X =¢X +C,%, +CX, =¢C,| 0 |+c,|e' |+c,| e |=| ce'+ce”
e 0 e’ ce” +c,e
t 2t
X(t) = c,e + 2c,e
y(t) = ce'+ ce”
3t 2t
Z(t) = ce’ + C,e

It would be interesting to solve this system using another approach! See the next slide!



’ x(t) = ce' + 2ce’
X'=3x-2y - Manipulate these algebraically y(t) = c,e'+ ce”
y'=X to show that z2(t) = ce’+ c,e™

2

2"-31"-47'+122=0 __
/ ~
Solution: z(t) =c,e™ H Cx e 2t c e

/
-’

2'=—-X+Yy+3z

Missing Term

~

Similarly, the first two y" =3y +2y =0
equations can be -

Solution: y(t) =c.e' +c.e”
manipulated to get y(t) =Ce +C;

Now differentiate X(t) =y'(t)
y(t) to get x(t) Solution: x(t) =c,e' + 2c,e”



Consider the solution  z(t) = kie3t + kye %'+ kze?t of z'" —3z" —4z'+12z=0

Substituting thisin z' = —x+y+3z weget Skye '+ kze?t=—-x+y

Note that, we also got  x(t) = c,et + 2c3e?t, y(t) = c et + c;e?t  (see previous slide)
= —x +y = —cze?t
Therefore, Skoe 2t + kye?t = —cze?t

= k, can be arbitrarily chosen (i.e. k1= c; as earlier), but k, and k;must satisfy the above equation

Comparing the coefficients of e %t and e?! in the LHS and RHS of the above, we get k, = 0,k3 = —c3

_ 3t 2t
Therefore, z(t) = c1e”" ++cze So, “All Roads Do Indeed

, Lead to Rome”
Same solution as before!




