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FIELD (Definition): A field is a set of numbers with the property that if 
, then , , and 

௔

௕
are also in (assuming, of course, 

that 
௔

௕
.

e.g. are fields of numbers

are not fields of numbers!

- Rational Numbers : Natural Numbers (positive integers)
- Real Numbers : Integers
- Complex Numbers
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VECTOR SPACES (Definition): A vector space, consists of a set of 
vectors, a field of scalars, and two operations:

i. Vector Addition: if then

ii. Scalar Multiplication: and produces a new vector

These scalars and vectors also satisfy the following axioms

i.   Associativity of addition: 
ii.  Associativity of multiplication: 
iii. Distributivity: 

,
iv.  Unitarity: 
v.  Existence of zero: 
vi. Negation: 
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VECTOR SPACES (Examples):

1) Let be the set of column matrices (vectors), be the field of 
reals , and the laws of vector addition and scalar multiplication are 
defined as: 

ଵ

ଶ

௡

ଵ

ଶ

௡

ଵ ଵ

ଶ ଶ

௡ ௡

and   

ଵ

ଶ

௡

ଵ

ଶ

௡

. 

HW: Verify that the above indeed constitutes a vector space! 
(Check that the axioms are satisfied.)
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VECTOR SPACES (Examples):VECTOR SPACES (Examples):

2)  Let be the set of all continuous functions , let the field of 
scalars be , and let the operations be as usually defined. 

HW: Verify that the above indeed constitutes a vector space!

3) Let be the set of all continuous functions that satisfy the 
equation ᇱᇱ . (Can you think of any function that satisfies this 
property? Cosine, Sine?) 

Let the field of scalars be . The operations are defined in the usual 
manner. Hint: ଵ ଶ ଵ ଶ

ᇱᇱ
ଵ
ᇱᇱ

ଶ
ᇱᇱ

ଵ

ଶ ଵ ଶ ; and ଵ
ᇱᇱ

ଵ
ᇱᇱ

ଵ ଵ . 
Are these results consistent with the definition of the vector space? 
Also check whether all axioms are compliant? 
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LINEAR INDEPENDENCE OF VECTORS

Definition (Linearly dependent vectors):
Let be a vector space and be a non-empty subset. Then is 
linearly dependent if there are distinct vectors ଵ ଶ ௞

ଵ ଶ ௞ ଵ ଵ ଶ ଶ ௞ ௞

This is equivalent to saying that at least one of the vectors ௜ can be 

expressed as a linear combination of the others, i.e.  ௜
௝ஷ௜

௖ೕ

௖೔
௝

Definition (Linearly independent vectors):
A subset which is not linearly dependent is said to be linearly independent.
Thus a set of distinct vectors ଵ ଶ ௞ is linearly independent if and 
only if an equation of the form ଵ ଵ ଶ ଶ ௞ ௞ always implies that 

ଵ ଶ ௞
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Geometrical Interpretation of Linear 
Dependence

Let ଵ ଶ ଷ be the vectors in 3D-Euclidean 
space ଷ with a common origin. If these vectors 
form a linearly dependent set, then one of them, 
say ଵ, can be expressed as a linear 
combination of the other two: ଵ ଶ ଷ. 
This implies, by the parallelogram law, that the 
three vectors are co-planar.

In fact, linearly dependent set of vectors with 
common origin co-planar.
Can you think of a similar interpretation of vectors in ℝଶ?

Fig. 1: Linear dependence of 
vectors is equivalent to coplanar 
geometry
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Consider what happens when we have three vectors A, B and C, from a 
common origin, in a 2-dimensional vector space, where –

A = B =           and  C =              

Yes, if we choose α and β as                          and 

Looking at these, we can immediately conclude that this cannot be done if A 

and B are collinear, because then

What can you conclude when either α or β or both become zero?

1

2

a

a

 
 
 

1

2

b

b

 
 
 

1

2

c

c

 
 
 

1 2 2 1

1 2 2 1

c b c b

a b a b
 



2 1 1 2

1 2 2 1

c a c a

a b a b
 




Can I represent the vector C as a linear combination 
of the vectors A and B such as C = αA + βB ?

1 1

2 2

a b

a b

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Example

A = B =           and  C =              
1

2

 
 
 

1

2

 
 
 

2

4

 
  

Show that these vectors are linearly dependent in 2
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We choose scalars c1, c2, c3 such that - 1 2 3

1 1 2 0

2 2 4 0
c c c

       
                

1 2 3

1 2 3

2 0

2 2 4 0

c c c

c c c

   
  

This gives
Since the number of unknowns is 
more than the number of equations, 
there will be a non-trivial solution

Therefore, the vectors are Linearly Dependent



Example
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We choose scalars c1, c2, c3 such that  2
1 2 3( 1) ( 2) ( 1) 0c x c x c x     

1 2 3

1 2

3

2 0

0

0

c c c

c c

c

  
 



This gives
Clearly, this can only have the trivial 
solution c1= c2 = c3 = 0

Therefore, the polynomials are Linearly Independent

Are the polynomials x+1, x+2, x2-1 linearly 
independent in the vector space  P3( )?

Notation:  P3( ) is the set of polynomials 
of less than degree 3 with real coefficients



Example
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In the vector space V= P( ), consider the subset S = {x-1, x2+1, x3-x2-x+3}. Is S linearly 
dependent or linearly independent?

Consider 2 3 2
1 2 3( 1) ( 1) ( 3) 0a x a x a x x x       

Equating the coefficients of 
the powers of x to zero for 
each term in the LHS, we get -

1 2 3

1 3

2 3

3

3 0

0

0

0

a a a

a a

a a

a

   
 
 



The only solution to this linear homogenous system is the trivial solution, so the 
vectors in the subset S are linearly independent 



BASIS OF A VECTOR SPACE (Definition)

Let be a non-empty subset of a vector space . Then is called a basis
of if both the following are true:

is linearly independent cannot generate an element of as 
linear combination of the other elements of 

ii. generates (i.e. spans ) any element of can be generated as 
a linear combination of the elements of 

What is the meaning of “spans”? 

Technically, it means that every element (vector) in the space can be 
expressed as a linear combination of the elements of the set . 
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Examples of Bases

1. Basis of ℝ௡:   𝒆𝟏 =

1

0

.

.

0

,   𝒆𝟐 =

0

1

.

.

0

,   … ,   𝒆𝒏 =

0

0

.

.

1

form a basis of ℝ௡ because (i) they  are 

linearly independent (by inspection), and (ii) they span ℝ௡ because 𝑐ଵ𝒆𝟏 + 𝑐ଶ𝒆𝟐 +⋅⋅⋅ 𝑐௡𝒆𝒏 =

𝑐ଵ

𝑐ଶ

.

.

𝑐௡

generates any vector in ℝ௡ depending on the values of 𝑐௜∀𝑖 = 1,2, . . . , 𝑛
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Examples of Bases (continued):

2. Let ௡ be a vector space of all polynomial functions of degree or less.
The basis of ௡ is ଶ ௡ , the set of monomials.
(This is not a unique basis set because ଴ ଵ ௡ also forms 
a basis where ௜ ௡ )

3. Let ௠×௡ denote the set of matrices with entries in . Then

௠×௡ is a vector space over . Vector addition is just matrix addition
and scalar multiplication is defined in the obvious way (by multiplying each
entry of the matrix by the same scalar). The zero vector is just the zero
matrix. One possible choice of basis is the matrices with a single entry
equal to 1 and all other entries 0.
(We will study the vector space of matrices in more detail in subsequent
lectures!)
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PROPERTIES OF BASES:

1. Must every vector space have a basis?

Ans: Every non-zero, finitely generated vector space has a basis!

2.   Does a vector space have a unique basis?

Ans: Usually a vector space will have many bases. e.g., the vector 

space ଶ has the basis as well as the standard basis 

.

3. What is the dimension of a vector space?

Ans: 
Can you think of a vector space whose dimension is infinite?
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A Few Other Things –

Finitely Generated Vector Space: One where you only need a finite 
number of elements to generate the vector space using linear 

combinations, e.g. ଶneeds only (0,1) & (1,0) to generate all vectors in ଶ

Infinite Dimensional Vector Space (example): Let P be the vector space 
of all polynomials in X with rational coefficients. P is infinite dimensional. 
To see this – If P is given by the span of k polynomials in P, p1 ….pk where 
m is the maximum of the degrees of p1 ….pk . Then xm+1 is a vector which 
cannot be written as a combination of p1 ….pk . This is a contradiction so 
P cannot be finite dimensional. 
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VECTOR SPACES: We will study more about the vector space of 𝒎 × 𝒏 matrices over the 
reals and their mathematical utilities! 
In fact much of this course is a study about matrices and their applications in engineering. 

Vector space of 𝑚 × 𝑛 matrices over the reals, 𝕄௠×௡(ℝ) and associated vector spaces

1. So what are matrices?

Ans: Matrices are convenient arrangement of numbers in rows and columns lending a compact 
structure that are amenable to mathematical laws (laws or rules of matrix algebra) that are a 
consequence of matrix operations like addition, multiplication, transpose, inverse, etc:

A+B = B+A  Commutative Law of Addition (A+B)+C = A+(B+C)   Associative Law of Addition
A+0 = A (AB)C = A(BC) Associative Law of Multiplication
AI = A = IA I: Identity Matrix A(B+C) = AB+AC    (A+B)C = AC+BC Distributive Laws
A-B = A+(-1)B (cd)A = c(dA) c(AB) = (cA)B = A(cB)
c(A+B) = cA+cB (c+d)A = cA+dA
(A+B)T = AT + BT

(AB)T = BTAT    note the change in order of A and B

Here, 𝐴, 𝐵, 𝐶 ∈ 𝕄௠×௡ ℝ , 𝑎௜௝ ∈ ℝ, 𝑐, 𝑑 ∈ 𝔽where 𝔽 ≡ ℝ in our discussion in this chapter.

We can generalize a matrix as consisting of appropriately defined sub-matrices (does not have to be just numbers)!
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Taking the transpose of a matrix   

ଵଵ ଵଶ ଵ௡

ଶଵ ଶଶ ଶ௡

௠ଵ ௠ଶ ௠௡

gives   ்

ଵଵ ଶଵ ௠ଵ

ଵଶ ଶଶ ௠ଶ

ଵ௡ ଶ௡ ௠௡

How do you take the transpose of a matrix?

m rows and n columns

n rows and m columns
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2.  The rules of matrix algebra guarantee that ௠×௡ is a vector 
space!

3. Special cases: i) When ௠×௡ , we recover the familiar 
Euclidean space ௠, 

and ii) When we recover the vector space ௡ of all 
real row vectors.

4. A practical application of matrices: A system of linear equations can 
be expressed in matrix form and the entire mathematical machinery of 
matrices can be unleashed to find and analyze the solution(s) of the said 
system of linear equations. 

There is a seamless hierarchy of what are known as TENSORS in mathematical parlance, the most simplest tensor being scalars (tensors of rank 0), 
the next in the hierarchy are vectors (tensors of rank 1), followed by matrices (tensors of rank 2), etc. It must be noted that not all matrices are 
tensors, but all tensors of rank 2 are definitely matrices!
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Example 4.1: Consider the two set of linear equations –

2𝑥 − 𝑦 = 0
−𝑥 + 2𝑦 = 3

………………………………. (i)

We begin by sketching out the respective straight lines 
𝟐𝒙 − 𝒚 = 𝟎 and − 𝒙 + 𝟐𝒚 = 𝟑. 

The solution of this system is the intersection point of these two 
straight lines, which is 𝑥 = 1, 𝑦 = 2.
If we express this system of linear equations in matrix-vector 

notation, then we have 𝐴𝒙 = 𝒃, where 𝐴 =
2 −1

−1 2
is the 

coefficient matrix, 𝒙 =
𝑥
𝑦 , and 𝒃 =

0
3

.  

The system (i) corresponds to the row picture, and the solution 
strategy presented above lends a geometrical interpretation of 
this row picture.

Points which follow  2x-y=0  lie on the red line. Points which follow   –x+2y=3   lie on the blue line.
Our solution is the point which lies on both the lines, i.e. their intersection point.
Now think of what happens when there are  -
(a) No intersection between the two lines (except at infinity) or 
(b)  Infinitely many such points.
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There is an alternative (and sometimes more useful) geometrical 
picture, the column picture, which lends a different interpretation 
of the situation at hand. 

By careful inspection, we notice that the earlier system of 
equations can be re-written as follows:

𝑥
2

−1
+ 𝑦

−1
2

=
0
3

Here the system of equations is expressed in terms of a linear 
combination of the column vectors of 𝐴.

If we treat the columns as vectors in 2D Euclidean space, and 
consider the correct solutions (say we somehow know that 𝑥 =
1 and 𝑦 = 2), then we have the following –

“The resultant of adding the two vectors (properly scaled, i.e. 
weighted) on the left-hand side is identically equal to the vector 
b on the right-hand side.”

2
1

1

 
  

1
2

2

 
 
 
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Suggest doing this by taking the 
projection on one vector, along the 
direction of the other



Throughout our study about linear algebra, the idea of linear combination and column 
vectors of a matrix will play a very important role in terms of the mathematical machinery 
as well as interpretation of the physical picture.

Of course, the question arises whether we can always solve this system as follows:  
𝒙 = 𝐴ିଵ𝒃 for any given 2D vector 𝒃?

This will be possible only if 𝐴 is invertible, i.e., 𝐴 -1 exists! In that case, the columns of 𝐴
will span the entire 2D Euclidean plane (and 𝒙 = 𝐴ିଵ𝒃 will be the solution for any 2D 
vector 𝒃), i.e. there will be one combination of the columns which will give b.

This should the lead us to ask when is 𝐴 invertible? i.e., when will the columns of 𝑨
span the entire 2D Euclidean plane? 
The answer should be obvious by inspecting the above 2D graph: whenever the 
columns of 𝑨 are linearly independent. 

Note that spanning a plane here is analogous to obtaining any vector in the plane by a 
linear combination of vectors.   

From the notes of Prof. Amrik Sen, Plaksha University 22



Example 4.2:  Consider the following system of linear equations-

2𝑥 + 8𝑦 + 4𝑧 = 2
2𝑥 + 5𝑦 + 𝑧 = 5

4𝑥 + 10𝑦 − 𝑧 = 1
(ii)

This system can be expressed in matrix form as: 𝐴𝒙 = 𝒃 where

                      𝐴 =
2 8 4
2 5 1
4 10 −1

, 𝒙 =
𝑥
𝑦
𝑧

, and 𝒃 =
2
5
1

. 

Here 𝐴 is called the coefficient matrix. 

The three planes defined by the system of equations (ii) 
intersect at a point 𝑥 = 11, 𝑦 = −4, 𝑧 = 3 which is the solution. 

This is the Row Picture.
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Now let us examine the Column Picture

𝑥
2
2
4

+ 𝑦
8
5

10
+ 𝑧

4
1

−1
=

2
5
1

Like in the previous example, a given 3D-vector 𝒃 can
be obtained by the linear combination of the column
vectors of 𝐴 with the appropriate coefficients (𝑥, 𝑦, 𝑧).

The appropriate coefficients on the l.h.s. form the
solution set.

Augmented Matrix    , where     =
2 8 4 2
2 5 1 5
4 10 −1 1

A A We will find this to be useful later
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This column picture and the linear combination of the
columns allow us to determine, geometrically, the
conditions when a unique solution can be attained for
any 3D-vector 𝒃.

The answer is, once again, when 𝐴 is invertible, i.e.
when the columns of 𝐴 are linearly independent (or
equivalently when the column vectors of 𝐴 are not co-
planar), i.e. in that case, the columns vectors of A span
the 3-D volume and a proper combination of them will
give b

If the column vectors of 𝐴 were co-planar, then a linear
combination of them will not span the entire 3D plane
and a unique solution will not be possible.
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A Peek into the Future - “Motivating the Reduced Row Echelon Form”

Note that the route to obtain the solution involves finding the inverse of 𝐴. This may be difficult 
especially if the number of unknown variables (and thereby the number of equations) are large. 

Computing the inverse of a large matrix becomes simpler by transforming the original coefficient 
matrix into what is called a Reduced Row-Echelon Form 
This form lies at the heart of several numerical techniques to solve systems of linear equations and 
also characterizes several important features of the coefficient matrix. 

In any case, as a prelude to what is to come soon, the solution to this system of linear equations 

can be obtained by transforming the Augmented Matrix    , where     =
2 8 4 2
2 5 1 5
4 10 −1 1

, into its 

Reduced Row-Echelon Form   𝑟𝑟𝑒𝑓(    ) =
1 0 0 11
0 1 0 −4
0 0 1 3

. 

From this, the solutions can be directly obtained as     𝑥 = 11, 𝑦 = −4, 𝑧 = 3. We will study this next.
We will study subsequently why this turns out to be the case. The point here is that the matrix structure and its
rules (laws of matrix algebra) are useful to solve such systems of linear equations.
We will later do a lab project to further understand the power of this technique to solve engineering problems.

A A

A
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5. Reduced Row-Echelon Form or rref (Definition): 

A matrix is said to be in rref if it satisfies all the following conditions

i. If a row has non-zero entries, then the first non-zero entry is a 1, 
known as the leading 1 (or pivot) in this row. 

ii. If a column has a leading 1, then all the other entries in that 
columns are 0.

iii. If a row contains a leading 1, then each row above it contains a 
leading 1 further to the left. 

The third condition implies that rows of 0’s, if any, appear at the 
bottom of the matrix.
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6. Types of elementary row operations (in order to obtain the rref):

i. Divide a row by a non-zero scalar.
ii. Subtract a multiple of a row from another row.
iii. Swap two rows.

Question: Why can we do these operations?

Answer: Since the rows are the rows of the corresponding system of 
linear equations, these operations are such that doing them will not 
affect the solution to the equations.

We will later see that points 5 and 6 above form the core of the
powerful GAUSS-JORDAN ELIMINATION approach to solve systems
of linear equations.
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Example:


3 1 1 1 1 1 1 3

2 3 8 2 3 1 2 3 1 8

2 2 3 1 2 2 1 2 2 3

x y z

x y z A A

x y z

      
                
           

Augmented
MatrixSystem of Equations

Ax=b

1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3

2 3 1 8 0 1 3 2 0 1 3 2 0 1 3 2

1 2 2 3 0 3 3 6 0 0 6 12 0 0 1 2

       
                      
                

Augmented
Matrix

Row 
Echelon 
Form

1 1 1 3 1 0 2 5 1 0 0 1

0 1 3 2 0 1 3 2 0 1 0 4

0 0 1 2 0 0 1 2 0 0 1 2

     
             
            

Row 
Echelon 
Form

Reduced Row 
Echelon Form

1S ,ol 4, 2ution x y z   



7. Linear Transformations (Definition): 

A function 𝑇: ℝ௡ → ℝ௠ is called a linear transformation if ∃𝐴 ∈ 𝕄௠×௡(ℝ) such that 
𝑇(𝒙) = 𝑨𝒙, ∀𝒙 ∈ ℝ𝒏 mX1  ←   mXn   nX1

This is a mapping from n-dimensional space to m-dimensional space

Example:      The rotation matrix 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

is a linear transformation which rotates a 

vector in ℝଶby 𝜃.
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Ques: Given 𝑇: ℝ௡ → ℝ௠, how do we find 𝐴?

Ans: 𝐴 =

| |   |
𝑇(𝒆𝟏) 𝑇(𝒆𝟐) ⋅ ⋅ 𝑇(𝒆𝒏)

| |   |

where 𝒆𝒊 is the 𝑖௧௛ standard basis element of ℝ௡.
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……….  n columns ………….

m
rows
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Finding A, given the transformation T – Another Example

The transformation T is given as -
1 2 3 1

2 3 2 2
T T
       

        
       

Method 1:  Manipulate directly 
to find 

5 51 11 02 4 2 4
0 1 1 7 71

2 4 2 4

T T A
                                 

Method 2:  Assume
and solve for a1, a2, b1, b2

1 1 1 1 1 1

2 2 2 2 2 2

1 2 3 1

2 3 2 2

a b a b a b
A then

a b a b a b

            
              

            

Method 3:  Using Matrix Inversion 
1 53 111 3 2 1 2 1 1 3 2 1 2 42 4

2 2 3 2 3 2 2 2 3 2 71 1 1
2 4 2 4

A A
                                          
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Continuing with this example -

51
2 4

71
2 4

x
T x A x

y

          

 
transforms a 2-dimensional vector in V, i.e. 

to another two dimensional vector in W

𝑥
𝑦

1 5

2 4
1 7

2 4

x y

x y

   
 
   
 

This gives the image of 
the transformation T in 
the target space W 
spanned by the basis

51
2 4,

1 7
2 4

   
  
      

When does this transformation create a {0} in the target space?
When x=0 and y=0

Ker(T), the kernel of 
the transformation



Transformation from ௡ ௠

An invertible linear transformation is a map between vector spaces and with an inverse map which 

is also a linear transformation.
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Theorem: A matrix is invertible ௡

In that case, the matrix will have n independent rows (or columns)

Finding the inverse of a matrix: ௡×௡

In order to find ିଵ, form the augmented matrix    | ௡) and compute 
)

- If ) is of the form ( ௡| ), then ିଵ

- If is of any other form, then is not invertible. 

ିଵ ିଵ ିଵ note the change in order of A and B

A

A
A
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Find Inverse of 
2 1

1 2

 
 
 

Find rref
2 1 1 0

1 2 0 1

 
 
 

1 11 02 2
11 2 0

 
 
 
 

1 11 02 2
3 1 10 22

 
 
  

1 011 22
210 1 33

 
 
  

2 1
3 3
1 2
3 3

I
 
 
   



00

V
W

T: V→W

Ker(T)

Im(T)

Kernel and Image of the Transformation T
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Domain Range

 Im( ) ( )T T v v V 

 ( ) ( ) 0Ker T v V T v  



8. Image or Range of a Matrix/Linear Transformation (Definition)

𝐼𝑚(𝐴) = 𝐼𝑚(𝑇) is the span of the column vectors of 𝐴.

Que: Find a basis of the image of 𝐴 =

1 2 2 −5 6
−1 −2 −1 1 −1
4 8 5 −8 9
3 6 1 5 −7

= 
| | | | |

𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓

| | | | |

and determine 𝑑𝑖𝑚(𝐼𝑚(𝐴))

Ans: A basis of the image of 𝐴 can be found as   

1
−1
4
3

,

2
−1
5
1

which gives 𝑑𝑖𝑚(𝐼𝑚(𝐴)) = 2
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To find the basis of Im(A), we need to identify the redundant columns of A from amongst all the column 
vectors of A.

By mere inspection of A, it will be hard to tell which of the columns of A are redundant ( i.e. linearly 
dependent on the others).

So we will transform  A   to 𝐵 = 𝑟𝑟𝑒𝑓(𝐴) =

1 2 0 3 −4
0 0 1 −4 5
0 0 0 0 0
0 0 0 0 0

= 
| | | | |

𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓

| | | | |
.

The redundant columns of B correspond to the redundant columns of A and are easy to spot from B

These are the columns that do not contain a leading 1, i.e., 𝒃𝟐 = 2𝒃𝟏, 𝒃𝟒 = 3𝒃𝟏 − 4𝒃𝟑,  𝒃𝟓 = −4𝒃𝟏 + 5𝒃𝟑

Therefore, the redundant columns of A are  𝒂𝟐= 2𝒂𝟏, 𝒂𝟒 = 3𝒂𝟏 − 4𝒂𝟑,  and 𝒂𝟓 = −4𝒂𝟏 + 5𝒂𝟑

and the non-redundant columns of A are 𝒂𝟏and 𝒂𝟑 which form a basis of image of A as given in the 
previous slide
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9. Kernel of T (Definition): 

Kernel of (or equivalently the null space of ): 
The set of all ௡ s.t.

Q) Find a basis of the kernel of A (equivalently, ) and determine

Ans) Most importantly . 

So we might as well solve for 

ଵ

ଶ

ଷ

ସ

ହ

.
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This is done by considering the augmented matrix from 
which we have the following: 

ଵ ଶ ଷ ସ ହ

ଵ ଶ ଷ ସ ହ

or equivalently,

ଵ ଶ ସ ହ

ଷ ସ ହ

where ଶ ସ ହ

How we can obtain 
the rref(A) is given in 
the next slide.
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Transforming a Matrix to a Reduced Row Echelon Form

1 2 2 -5 6

-1 -2 -1 1 -1

4 8 5 -8 9

3 6 1 5 -7

1 2 2 -5 6

0 0 1 -4 5

4 8 5 -8 9

3 6 1 5 -7

1 2 2 -5 6

0 0 1 -4 5

0 0 -3 12 -15

3 6 1 5 -7

1 2 2 -5 6

0 0 1 -4 5

0 0 -3 12 -15

0 0 -5 20 -25

1 2 2 -5 6

0 0 1 -4 5

0 0 0 0 0

0 0 -5 20 -25

1 2 2 -5 6

0 0 1 -4 5

0 0 0 0 0

0 0 0 0 0

1 2 0 3 -4

0 0 1 -4 5

0 0 0 0 0

0 0 0 0 0

Leave it to you to work out the details of what is done in each step!
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Therefore, 

𝒙 =

−2𝛼 − 3𝛽 + 4𝛾
𝛼

4𝛽 − 5𝛾
𝛽
𝛾

=

−2𝛼 −3𝛽 +4𝛾
𝛼   
 4𝛽 −5𝛾
 𝛽  
  𝛾

= 𝛼

−2
1
0
0
0

+ 𝛽

−3
0
4
1
0

+ 𝛾

4
0

−5
0
1

. 

The 𝑁𝑢𝑙𝑙(𝐴) is spanned by these basis vectors

−2
1
0
0
0

,

−3
0
4
1
0

,

4
0

−5
0
1

and 𝑑𝑖𝑚(𝑁𝑢𝑙𝑙(𝐴)) = 3
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Something for you to try out –

Question:       Find the basis for the null space of the matrix 

and determine its dimension

Answer:

and the dimension of null space of A is 2
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rref (A)=                                                  Basis of Image of A =

dim Im(A) = 2

Basis for the Null Space of A 

1 0 4/3 4/3

0 1 1/3 -2/3

0 0 0 0

1 1

2 1

1 5

 
 
 
 
 

1 3 4 1 3 4

2 3 4 2 3 4

4 4 4 4
0 0

3 3 3 3
1 2 1 2

0 0
3 3 3 3

x x x x x x

x x x x x x

       

       
3 4

4 4 4 4

3 3 3 3
1 2 1 2

3 3 3 3
1 0

0 1

x x X

 

   







             
     
              
     
     
     
   












4 4

3 3
1 2

,
3 3
1 0

0 1

       
   
      
   
   
   
   
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Something for you to try out –

Que: Find the basis for the null space of the matrix 
and determine its dimension

Answer:                            and the dimension of null space of A is 2
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1 1 1 1 1

1 1 0 2 2

1 1 2 0 3

2 2 1 3 4

A

  
   
  
 

  

1 2

1 0

0 1

0 1

0 0

   
   
   
   
   
   
   
   



rref (A)=                                       Basis of Image of A =

& dim Im(A) = 3

Basis for the Null Space of A                   dim Ker(A) = 2

1 1 1

1 0 2

1 2 3

2 1 4

     
          
     
     

     

1 2

1 0

0 1

0 1

0 0

   
   
   
   
   
   
   
   
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1 1 0 2 0

0 0 1 1 0

0 0 0 0 1

0 0 0 0 0

 
 
 
 
 
 

1 2 4 1 2 4

3 4 3 4

5 5

( ) 0 2 0 2

0

0 0

rref A x x x x x x x

x x x x

x x

     
   

 

 1

2

3 2 4

4

5

1 2

1 0

0 1

0 1

0 0

x

x

x x x x

x

x

     
     
     
        
     
     

    
    





10. Theorem: ௠×௡

For a square matrix the statement is true when is invertible 

When A is invertible, ௡ no. of pivots = n = rank(A) by 
definition. 

Further, 

௡ ) which gives us ଵ ଶ ଷ

which gives The converse is obvious.   

From the notes of Prof. Amrik Sen, Plaksha University 49



11. Theorem (Rank-nullity theorem): For any matrix , the 
following is known as the fundamental theorem of linear algebra:
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Proof of the Rank Nullity Theorem
A m x n  matrix with rank r and nullity ℓ

Rank Nullity Theorem claims that r + ℓ = n 

Consider the matrix equation Ax = 0 and assume that Arref = rref (A)

• The elementary row operations which reduce A to Arref do not change the row
space of A or the rank of A

• The number of components in x is n, which is also the number of columns
of A and of Arref

• Since Arref has only r nonzero rows (because its rank is r), n−r of the
variables x1, x2, …, xn in x are free for us to choose as parameters in the general
solution of Ax = 0

• But the number of free variables, i.e. the number of parameters in the general
solution of Ax = 0, is the nullity of A.

• The nullity of A is then n − r, and the statement of the theorem,
r + ℓ = r + ( n − r) = n follows
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Example

1 2 0 4

3 1 1 0

1 5 1 8

A

 
   
    

2 4
1 0

7 7
1 12

( ) 0 1
7 7

0 0 0 0

rrefA rref A

 
 
 
    
 
  
 

To solve the system Ax=0, choose
x3 and x4 and solve for x1 and x2
in terms of x3 and x4

1 3 4

2 3 4

2 4

7 7
1 12

7 7

x x x

x x x

  

  
Im(A) is spanned by

and dim(Im(A))=2

1 2

3 1

1 5

   
   
   
       

1

2
3 4

3

4

2 4

7 7
1 12

7 7
1 0

0 1

x

x
x x x

x

x

        
    
            
    
        
   



2 4

7 7
1 12

7 7
1 0

0 1

       
   
       
   
   
   
   

Null(A) or Ker(A)is 
spanned by

and dim(Im(A))=2Rank-Nullity Theorem 
is satisfied



Mini-project: Transactions on an accounting system
Objective: This simple mini-project will demonstrate an application from economics/accounting 
whereby we will be required to compute the basis of the null space of a certain matrix. This 
basis will represent the most fundamental unit of transaction in a closed accounting system. 

Description: Consider a closed accounting system with 𝑛 accounts, say 𝛼ଵ, 𝛼ଶ, 𝛼ଷ, . . . 𝛼௡. At any 
instant, each account has a balance which can be a credit (positive), debit (negative), or zero. 
Since the accounting system must at all times be in balance, the sum of the balances of all the 
accounts will always be zero. Now suppose that a transaction is applied to the system. By this 
we mean that there is a flow of funds between accounts of this system. If as a result of the 
transaction the balance of account 𝛼௜ changes by an amount 𝑡௜, then the transaction can be 
represented by an 𝑛-column vector with entries 𝑡ଵ, 𝑡ଶ, 𝑡ଷ, . . . , 𝑡௡. Since the accounting system 
must still be in balance after the transaction has been applied, the sum of the 𝑡௜s will be zero. 

The transactions correspond to column vectors of the form 𝒕 =

𝑡ଵ

𝑡ଶ

⋅
⋅
⋅

𝑡௡

. Vectors of this form are 

easily seen to constitute a subspace 𝕋 of the vector space ℝ௡; 𝕋 is called the transaction 
space. 
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Questions:

Q1) Construct a matrix such that is just the null space of .

Q2) Deduce the reduced row-echelon form, 
˜

of .

Q3) Consider the solution of the equation 
˜

. Express as a 
linear combination of the most canonical column vectors. 

Q4) Deduce the basis of the transaction space .

Q5) What is the dimension of ? Given that ௡, does the 
dimension of , you have just computed, make sense? Why?

Q6) Justify why your answer to Q4) above represents the most 
fundamental activity in this accounting system? 
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Computational solutions to systems of linear equations

Example 1: Let us consider the following system of equations

ଵ ଶ ଷ ସ

ଵ ଶ ଷ ସ

ଵ ଶ ଷ ସ

Does this set of equations have a solution? 

Let’s perform the following operations to eliminate ଵ:         
 eq. and    eq.

ଵ ଶ ଷ ସ

ଶ ସ
ଵ

ଶ

ଶ ସ
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Next we will attempt to eliminate ଶ from : ,

ଵ ଶ ଷ ସ

ଶ ସ
ଵ

ଶ

This is a contradiction and hence the above system of equations is 
inconsistent (no solutions)

This conclusion should have been an obvious one as here we have only THREE equations to solve for 
FOUR unknowns!
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Example 2:  Now consider the following system of equations 
𝑥ଵ + 4𝑥ଶ + 2𝑥ଷ = −2. . . . . . . . . . . . . . . . . (𝑖)

−2𝑥ଵ − 8𝑥ଶ + 3𝑥ଷ = 32. . . . . . . . . . . . . . . . . (𝑖𝑖)
𝑥ଶ + 𝑥ଷ = 1. . . . . . . . . . . . . . . . . (𝑖𝑖𝑖)

Does the above system of equations have a solution?

gives
𝑥ଵ + 4𝑥ଶ + 2𝑥ଷ = −2. . . . . . . . . . . . . . . . . (𝑖𝑣)

7𝑥ଷ = 28. . . . . . . . . . . . . . . . . (𝑣)
𝑥ଶ + 𝑥ଷ = 1. . . . . . . . . . . . . . . . . (𝑣𝑖)

Swap :
𝑥ଵ + 4𝑥ଶ + 2𝑥ଷ = −2. . . . . . . . . . . . . . . . . (𝑣𝑖𝑖)

𝑥ଶ + 𝑥ଷ = 1. . . . . . . . . . . . . . . . . (𝑣𝑖𝑖𝑖)
7𝑥ଷ = 28. . . . . . . . . . . . . . . . . (𝑖𝑥)
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Eq. 
ଵ

଻

𝑥ଵ + 4𝑥ଶ + 2𝑥ଷ = −2. . . . . . . . . . . . . . . . . (𝑥)
𝑥ଶ + 𝑥ଷ = 1. . . . . . . . . . . . . . . . . (𝑥𝑖)

𝑥ଷ = 4. . . . . . . . . . . . . . . . . (𝑥𝑖𝑖)

Now that we know ଷ , we can back substitute the knowns and 
compute the remaining unknowns: ଶ ଷ and ଵ

ଶ ଷ . 
Therefore, this system of equation has a unique solution.

This example will be very similar to the numerical technique we will 
learn in this section known as Gauss elimination. 

Before we study this new method (Gauss elimination), let us look at one more example next
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Example 3:  Consider the following system of equations
𝑥ଵ + 3𝑥ଶ + 3𝑥ଷ + 2𝑥ସ = 1. . . . . . . . . . . . . . . . (𝑖)

2𝑥ଵ + 6𝑥ଶ + 9𝑥ଷ + 5𝑥ସ = 5. . . . . . . . . . . . . . . . (𝑖𝑖)
−𝑥ଵ − 3𝑥ଶ + 3𝑥ଷ = 5. . . . . . . . . . . . . . . . (𝑖𝑖𝑖)

𝐸𝑞. (𝑖𝑖): (𝑖𝑖) − 2(𝑖)and(𝑖𝑖𝑖): (𝑖𝑖𝑖) + (𝑖) gives 

𝑥ଵ + 3𝑥ଶ + 3𝑥ଷ + 2𝑥ସ = 1. . . . . . . . . . . . . . . . (𝑖)
3𝑥ଷ + 𝑥ସ = 3. . . . . . . . . . . . . . . . (𝑖𝑖)

6𝑥ଷ + 2𝑥ସ = 6. . . . . . . . . . . . . . . . (𝑖𝑖𝑖)

Note ଶ has disappeared from eqs. ; so we proceed to the 
next unknown ଷ
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Example 3 (continued) :

Eq. 
ଵ

ଷ
followed by :

𝑥ଵ + 3𝑥ଶ + 3𝑥ଷ + 2𝑥ସ = 1. . . . . . . . . . . . . . . . (𝑖)

𝑥ଷ +
ଵ

ଷ
𝑥ସ = 1. . . . . . . . . . . . . . . . (𝑖𝑖)

0   = 0. . . . . . . . . . . . . . . . (𝑖𝑖𝑖)

Here the third equation tells us nothing and can be ignored. 

ସ and ଶ can be assigned arbitrary values: ସ ଶ to recover 
(by back substitution) ଵ ଷ . 

Stated more completely, one of ଷand ସ and one of ଵ and ଶ must 
be assigned arbitrary values and the other found by back substitution

This system of linear equations has infinitely many solutions!
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Gauss Elimination method (direct computational method!):

Here we are solving system of linear equations of the form:

ଵଵ ଵ ଵଶ ଶ ଵ௡ ௡ ଵ

ଶଵ ଵ ଶଶ ଶ ଶ௡ ௡ ଶ

௠ଵ ଵ ௠ଶ ଶ ௠௡ ௡ ௠
௧௛

Note that this is the same as  the equation  Ax = b   

(A is a mxn matrix, x is a nx1 column vector and b is a mx1 column 
vector.)
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Procedure:   (Gauss Elimination Method)

i) Find an equation in which 𝑥ଵ appears and, if necessary, interchange this equation with the 
first equation. Thus we can assume that 𝑥ଵ appears in the first equation. 

ii) Multiply eq. (i) by a suitable non-zero scalar in such a way as to make the coefficient of 𝑥ଵ

equal to 1.

iii) Subtract suitable multiples of eq. (i) from eqs. (ii) through (m) in order to eliminate 𝑥ଵ from 
each of these equations. 

iv) Inspect equations (ii) through (m) and find the first equation which involves one of the 
unknowns 𝑥ଶ, . . . , 𝑥௡,  say  𝑥௜మ

. By interchanging equations once again, we can suppose that 
𝑥௜మ

appears in eq. (ii).  

v) Multiply eq. (ii) by a suitable non-zero scalar to make the coefficient of 𝑥௜మ
equal to 1.
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Procedure:   (Gauss Elimination Method)  …….. continued….

vi) Subtract multiples of eq. (ii) from eq. (iii) through (m) to eliminate 𝑥௜మ
from each these 

equations. 
𝑥௜భ

+∗ 𝑥௜మ
+⋅⋅⋅∗ 𝑥௡ =∗. . . . . . . . . . . . (𝑖)

𝑥ଶ +⋅⋅⋅∗ 𝑥௡ =∗. . . . . . . . . . . . (𝑖𝑖)
⋅⋅ =⋅
⋅⋅ =⋅
⋅⋅ =⋅

𝑥௜ೝ
+⋅⋅⋅∗ 𝑥௡ =∗. . . . . . . . . . . . (r௧௛eq.)

0 =∗
⋅ =∗
⋅ =∗
0 =∗. . . . . . . . . . . . (m௧௛eq.)

vii) Examine eqs. (iii) through (m) and find the first one that involves an unknown other than 𝑥ଵ

and 𝑥௜మ
, say 𝑥௜య

. Interchange equations so that 𝑥௜య
appears in eq. (iii).
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Procedure:   (Gauss Elimination Method)  …….. continued….

This elimination procedure continues in this manner producing the so 
called pivotal unknowns ଵ ௜భ ௜మ ௜ೝ

until we reach a linear 
system in which no further unknowns occur in the equations beyond 
the ௧௛ equation. A linear system of this sort is said to be in echelon 
form. 

The ௝ are integers which satisfy ଵ ଶ ௥

After arriving at the echelon form, we use  back substitution to solve 
for the unknowns ଵ ଶ ௡

From the notes of Prof. Amrik Sen, Plaksha University 64


