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Matrix Factorizations and Applications

We've taken the world apart but we have no idea what to do with the pieces.


LU factorization (  where A is an  square matrix)

Consider the following set of equations:


With respect to the Gauss-elimination, the procedure to find the row-echelon form of the corresponding coefficient matrix, the following 

sequence of operations are performed  which involves the calculation of the multipliers .


Further, the system of equations corresponding to the row-echelon form looks as follows: 


A = LU n × n

a11x1 + a12x2 + ⋅ ⋅ ⋅a1nxn = b1 . . . . . . . . . . . . (i)
a21x1 + a22x2 + ⋅ ⋅ ⋅a2nxn = b2 . . . . . . . . . . . . (ii)

⋅ ⋅ = ⋅
⋅ ⋅ = ⋅
⋅ ⋅ = ⋅

an1x1 + an2x2 + ⋅ ⋅ ⋅annxn = bn . . . . . . . . . . . . (mth eq.)

Ej : (Ej − mjiEi) mji :=
aji

aii

a(1)
11 x1 + a(1)

12 x2 + ⋅ ⋅ ⋅a(1)
1n xn = b(1)

1 . . . . . . . . . . . . (i)

0 + a(2)
22 x2 + ⋅ ⋅ ⋅a(2)

2n xn = b(2)
2 . . . . . . . . . . . . (ii)

⋅ ⋅ = ⋅
⋅ ⋅ = ⋅
⋅ ⋅ = ⋅

0 + 0 + 0 + ⋅ ⋅ ⋅a (n)
nn xn = b(n)

n . . . . . . . . . . . . (mth eq.)
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Then the  decomposition reads as follows: .


Consequently, 


This entails that we can solve  first by forward substitution followed by solving for  in  by backward substitution.


Advantages of LU decomposition


Gauss elimination has a complexity of  while solving the system of equations by using the LU decomposition has a complexity of 
. 


Reading Assignment: Complexity of Gauss-elimination and LU decomposition method:
https://235d9ee8-8e8c-4d7b-a842-264ad94cf102.filesusr.com/ugd/334434_5a3eab64a8b0442cabd729aa5defab45.pdf

LU A = LU =

1 0 0 ⋅ ⋅ 0
m21 1 0 ⋅ ⋅ 0

⋅ ⋅ ⋅ 0
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

mn1 mn2 ⋅ ⋅ mn(n−1) 1

a(1)
11 a(1)

12 ⋅ ⋅ ⋅ a(1)
1n

0 a (2)
22 ⋅ ⋅ ⋅ a (2)

2n

⋅ 0 ⋅ ⋅ ⋅
⋅ ⋅ 0 ⋅ ⋅
⋅ ⋅ ⋅ 0 ⋅ a(n−1

(n−1)n

0 ⋅ ⋅ ⋅ 0 a (n
nn

Ax = b
LUx = b

Ly = b  where y = Ux

Ly = b x Ux = y

O(n3)
O(n2)
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 Example 1: Solve the following system of linear equations by using  factorization. 


  i.e., .


Soln: The following sequence of row operations reduces the above coefficient matrix  to the row-echelon form.


The row-echelon form of the coefficient matrix is given below.


Now by inspection and following how the multipliers s constitute the  matrix, we have, 


LU

x1 + x2 + 0x3 + 3x4 = 4
2x1 + x2 − x3 + x4 = 1

3x1 − x2 − x3 + 2x4 = − 3
−x1 + 2x2 + 3x3 − x4 = 4

Ax = b

A

E2 : (E2 − 2E1)
E3 : (E3 − 3E1)
E4 : (E4 − (−1)E1)
E3 : (E3 − 4E2)
E4 : (E4 − (−3)E2)

Row echelon form of A =

1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13

= U

mji L
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. 


Now once the  decomposition of the coefficient matrix  is accomplished, we can use this decomposition to solve 
any system of linear equations defined by the same coefficient matrix  (but different non-homogeneous “forcing” 
vector on the r.h.s.). This is where we leverage the most benefit from the  factorization in terms of complexity. 


Anyways, for the above system, we will first solve  by forward substitution as 

follows:

.  We 

can now solve the system  by backward substitution and obtain 

the required solution:


etc… 	

QR factorization

Coming up!


L =

1 0 0 0
2 1 0 0
3 4 1 0

−1 −3 0 1

LU A
A

LU
1 0 0 0
2 1 0 0
3 4 1 0

−1 −3 0 1

y1
y2
y3
y4

=

4
1

−3
4

y1 = 4, y2 = 1 − 2y1 = − 7, y3 = − 3 − 3y1 − 4y2 = 13, y4 = 4 + y1 + 3y2 = 8 − 21 = − 13

Ux = y,  i.e. 

1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13

x1
x2
x3
x4

=

4
−7
13

−13

x4 =
−13
−13

= 1, x3 =
13 − 13 × 1

3
= 0,
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Orthogonal basis and Gram-Schmidt orthogonalization 


Two vectors  are orthogonal if and only if . 

The vectors  are orthonormal if and only if . 


Example: The vectors  are orthonormal. 


Properties of orthonormal vectors:

1. Orthonormal vectors are (automatically) linearly independent.

2. Orthonormal vectors  form a basis in 

The shaded area denoted by  in the figure below is an infinite plane through the origin. 





⃗u 1 and  ⃗u 2 ⟨ ⃗u 1, ⃗u 2⟩ = 0
⃗u 1, ⃗u 2, ⋅ ⋅ ⋅ , ⃗u m ∈ ℝn ⟨ ⃗u i, ⃗u j⟩ = δij

⃗e 1, ⃗e 2, . . . , ⃗e n ∈ ℝn

⃗u 1, ⃗u 2, ⋅ ⋅ ⋅ , ⃗u n ∈ ℝn ℝn .

V
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0

⃗x ⃗x ⊥

⃗x || = projV ⃗xV
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Orthogonal projection and orthogonal complement:

Let
The above representation is unique.


Here . The transformation 
 is linear.  .


How do we compute ? 

Consider an orthonormal basis of : . Then 


Consequently, consider an orthonormal basis of : . Then any , 


⃗x ∈ ℝn and a subspace V of ℝn .  Then we can wrtie  ⃗x = ⃗x || + ⃗x ⊥,  where  ⃗x || ∈ V and  ⃗x ⊥ ∈ V⊥ .

V⊥ = { ⃗x ∈ ℝn : ⟨ ⃗v , ⃗x ⟩ = 0, ∀ ⃗v ∈ V}
T( ⃗x ) = projV ⃗x = ⃗x || from ℝn to ℝn V⊥ = Ker(T )

⃗x ||

V ⃗u 1, ⃗u 2, ⋅ ⋅ ⋅ , ⃗u m ∈ V which is a subspace of ℝn

⃗x || = ⟨ ⃗u 1, ⃗x ⟩ ⃗u 1 + ⋅ ⋅ ⋅ + ⟨ ⃗u m, ⃗x ⟩ ⃗u m; ∀ ⃗x ∈ ℝn .

ℝn ⃗u 1, ⃗u 2, ⋅ ⋅ ⋅ , ⃗u n ⃗x ∈ ℝn

⃗x = ⟨ ⃗u 1, ⃗x ⟩ ⃗u 1 + ⋅ ⋅ ⋅ + ⟨ ⃗u n, ⃗x ⟩ ⃗u n .
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⃗x

⃗u 1

⃗u 2 ⟨ ⃗u 1, ⃗x ⟩ ⃗u 1

⟨ ⃗u 2, ⃗x ⟩ ⃗u 2
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Properties of orthogonal complement:

Consider a subspace 

1.
2. .

3.
4.

Example: Consider the subspace  of , where . Find .


Solution: Recall that the column space of  is It can be easily checked that the column vectors of  are 
orthogonal by taking their scalar product. Thus we can construct an orthonormal basis of  The basis vectors 

are:  and .


Then  In order to check that this 

answer is indeed correct, verify that   


V ∈ ℝn .

V⊥ is a subspace of ℝn .
V ∩ V⊥ = { ⃗0 }
dim(V ) + dim(V⊥) = n .
(V⊥)⊥ = V .

V = Im(A) ℝ4 A =

1 1
1 −1
1 −1
1 1

⃗x || for  ⃗x =

1
3
1
7

A Im(A) . A
Im(A) .

⃗u 1 =

1/2
1/2
1/2
1/2

⃗u 2 =

1/2
−1/2
−1/2
1/2

⃗x || = ⟨ ⃗u 1, ⃗x ⟩ ⃗u 1 + ⟨ ⃗u 2, ⃗x ⟩ ⃗u 2 = 6 ⃗u 1 + 2 ⃗u 2 =

3
3
3
3

+

1
−1
−1
1

=

4
2
2
4

.

( ⃗x − ⃗x ||) ⊥ ⃗u 1, ⃗u 2 .
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Why are orthonormal basis vectors useful? 

1. We know that if we have some basis  of an n-dimensional vector space . Then any 

vector  can be written as  (as a linear combination of the basis 
vectors) but there is no first-principles or convenient way of finding the unique coefficients  
except by explicit guesswork calculations. Now instead if we have an orthonormal basis set 

 then any vector can be written as a linear combination of this orthonormal basis set as 
follows:


  where the coefficients can now be uniquely determined as 		

2.   Orthogonality guarantees linear independence.


Why are orthogonal transformations useful? 


1. Orthogonal transformations are metric preserving transformations, i.e. if  is orthogonal, then 
 
1

2. Orthogonal transformations are angle preserving transformations for orthogonal vectors. If , then 

⃗v 1, ⃗v 2, . . . , ⃗v n W
⃗x ∈ W ⃗x = α1 ⃗v 1 + α2 ⃗v 2 + ⋅ ⋅ ⋅ + αn ⃗v n

α1, α2, . . . , αn

⃗u 1, ⃗u 2, . . . , ⃗u n

⃗x = β1 ⃗u 1 + β2 ⃗u 2 + ⋅ ⋅ ⋅ + βn ⃗u n
βi = ⟨ ⃗u i, ⃗x ⟩, ∀i = 1,2,...,n

T : ℝn → ℝn

| |T( ⃗x ) | | = | | ⃗x | | , ∀ ⃗x ∈ ℝn .

⃗u ⊥ ⃗w
T( ⃗u ) ⊥ T( ⃗w ) .

 If  is an orthogonal transformation, then we say that  is an orthogonal matrix. 1 T ( ⃗x ) = A ⃗x A
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