
Chapter 3

Module 2, Lecture 5

3.1 Agenda Item

• Diagonalization of matrices

• Similarity transformation

• Spectral decomposition of matrices

Last Lecture:

• We define evs and EVs of a square matrix

• determinant and trace of a matrix and its relation with evs

3.2 Diagonalizable Matrices

Certain forms of matrices are convenient to work with. For example

• Upper/Lower triangular matrices(why?)

• Diagonal forms(why?)

Think finding evs and powers of above matrices.
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Wouldn’t it be nice if

A −→D

(any n× n matrix) (diagonal form)

A ∈Mn×n(F) is diagonalizable over F if there exists an invertible matrix S over

F such that A = SDS−1, or equivalently D = S−1AS.

Note that the evs of A and D will be the same and the above relation D = S−1AS

is known as the similarity transformation.

Q. When is a matrix diagonalizable?

Ans: A ∈Mn×n(F) is diagonalizable if and only if A has n linearly independent

EVs in Fn.

Note that an n× n complex matrix that has n distinct eigenvalues is diagonaliz-

able.

Example 9. Q. Find a matrix that diagonalizes A =

(
2 −1

2 4

)
.

Ans: Solve det(A − λI) = 0 to obtain λ1 = 3 + i and λ2 = 3 − i. Solving

Ax = λix for i = 1, 2, we obtain

X1 =

(
1

−1− i

)
, X2 =

(
1

−1 + i

)

as Evs of A w.r.t. the evs λ1, λ2, respectively. We note that S =

(
1 1

−1− i −1 + i

)
diagonalizes A. Since

S−1AS =

(
−1+i
2i

− 1
2i

1+i
2i

1
2i

)(
2 −1

2 4

)(
1 1

−1− i −1 + i

)

=

(
3 + i 0

0 3− i

)

=

(
λ1 0

0 λ2

)
= D
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The Column vectors of S form an eigenbasis for A and the diagonal entries of

D are the associated evs.

Q. What are the evs and EVs of the n× n identity matrix In?

Is there an eigenbasis for In?

Which matrix diagonalizes In?

This is in some sense a silly and yet a conceptually trick question.

Example 10. Find the eigenspace of A =


1 1 1

0 0 1

0 0 1

.

The evs are given by 0 and 1 with algebraic multiplicity 1 and 2, respectively.

To find EV consider

X1 = ker(A− 1I)

= ker


0 1 1

0 −1 1

0 0 0



= ker


0 1 0

0 0 1

0 0 0



= sp


1

0

0

 ,

where


0 1 0

0 0 1

0 0 0

 is the reduced row echelon form of the matrix


0 1 1

0 −1 1

0 0 0

. The

calculation: 
0 1 0

0 0 1

0 0 0



x1

x2

x3

 =


0

0

0



=⇒


x2

x3

0

 =


0

0

0


14



Above calculation shows that x2 = x3 = 0. Thus we can take any nonzero value as

x1 to obtain an EV of A w.r.t. the ev 1. For convenience we take x1 = 1 to obtain
1

0

0

 as an EV. Likewise X2 = kerA = sp


−1

1

0

. Thus we are able to find only

two linearly independent EVs. Hence we won’t have an eigenbasis here, equivalently

we cannot find S to diagonalize A.

3.3 Geometric multiplicity of ev

gemm(λ) = dim(ker(A− λIn))

= nullity(A− λIn)

= n− rank(A− λIn)

In previous example

gemm(1) = dim(ker(A− λIn)) = dim〈


1

0

0

〉 = 1 6= almu(1) = 2.

Theorem 11. A matrix A is orthogonally diagonalizable (D = Q−1AQ ≡ QtAQ)

iff A is symmetric (A = At).

3.4 Spectral decomposition

Let A be a real symmetric n × n matrix with evs λ1, λ2, . . . , λn and corresponding

orthonormal EVs v1, v2 . . . , vn; then

A =


...

...
...

v1 v2 v3
...

...
...



λ1 0

. . .

0 λn



. . . v1 . . .

. . . v2 . . .
...

. . . vn . . .


= QDQt.

This concludes the life and theory of a matrix in FM112.
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