Tutorial Worksheet-4 (WL5.1, WL5.2)
Orthogonal basis, properties of Orthonormal vectors, orthogonal projection and orthogonal complement,
properties of orthogonal complement, advantage of orthogonal transformations, Gram-Schmidt process

Name and section:

Instructor’s name:

1. Find the orthogonal projection # = proj,(Z) of the vector ¥ = (1,2, 3)7, onto vector v = (—1,0,1)T.
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since these vectors are orthogonal. hence
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hence 9 is the orthogonal projection of 0 onto the subspace of R* spanned by 1 and 0
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. Find an orthnormal basis for the space which is spanned by { [ﬂ , [_22] } in R2.

Solution: Let vy = [2] , Uy = [ 2 }
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Let 1 =01 = (2,1)*
Now, normalize 71,
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Now, normalize 75,
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hence the orthonormal basis is { ﬁ;\\j—a , {_12//\/55] }
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4. The set B = Of,(1f,]1 is a basis of R3. Use the Gram-Schmidt process to create an
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orthonormal basis of R?.
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Solution: Let v; = [0, vo= [1]|, v3=| 1
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Now, normalize 73, i.e

hence the orthonormal basis is
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