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Continuous Time Markov Chains and Queues

Figure 4.1: The wait is
on because queues are
everywhere. But the
seventeenth century
English poet, John Mil-
ton, lends us hope. He
writes: They also serve
who only stand and wait.

Queues feature in our daily lives like never before. From the checkout counter in the com-
munity grocery store to customer support over the phone, queues are theatres of great social
and engineering drama. Entire business operations of many leading companies are geared
towards providing hassle free customer support and experience - timely and effective reso-
lution of client queries about services on a regular basis. Alternatively, it could be effective
traffic management and resource optimization for a multiplex cinema operator involved in
ticket sales. Sometimes it may not involve humans at all like in the case of a database query
to a computer server for a specific information that may be routed through a job queue.
How a queue moves in time and how services are offered over epochs determine how busi-
nesses will be able to make profit or how efficiently computer servers will execute tasks.
All these have a huge technological and economical impact. No wonder we have seen huge
investments by concerned stakeholders to upgrade and upscale hardware and software in-
frastructure to re-engineer queues towards greater system efficiency and profitability. The
mathematical technology of queues is crafted out of models that investigate and replicate
stochastic behavior of engineering systems. This is the subject of our study in this chapter.

4.1 Chapter objectives

The chapter objectives are listed as follows.

1. Students will study and apply continuous time Markov chains to solve engineering prob-
lems.

2. Students will model and analyze queues using probability distributions.

3. Students will learn the inter-relationship between the probability transition matrix and the
stochastic generator matrix.

4. Students will learn to derive Kolmogorov’s backward and forward equations, use the
principle of detailed balance, and find stationary distributions of stochastic processes
using a stochastic generator matrix.

5. Students will deduce birth and death stochastic processes and analyze their equilibrium
and/or asymptotic behavior.

6. Students will solve an engineering problem using a classical queuing model.
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4.2 Chapter project: Queues and crowd management at COVID test centers

4.2.1 Prologue: Crowd management at COVID test kiosks

Crowd management at test centers is a major concern for health care administrators. This
issue has been amplified during the COVID pandemic when transmission rates have
been very high at times and huge numbers of people have been infected on a regular
basis, especially during peak periods of the disease. Administrators at test centers are
faced with a dual challenge - (i) they have to contain the number of people presenting
themselves at the test kiosks to a manageable number to minimize the risk of disease
transmission from over-crowding, and (ii) manage the exploding cost of clinical care and
rapidly rising expenditure of procuring test kits and setting up clean test kiosks that
have been sanitized. The latter point along with the fact that availability of employees
to conduct tests during a raging pandemic comes with a premium - demand intelligent
engineering and management of hospital and test facilities.

The sick who have symptoms or those who have tested positive using home kits or
quick Rapid Antigen Tests (RATs) may present themselves to test kiosks set up at hospital
premises in order to either confirm the results of their preliminary screening tests (that
may not have been very accurate) or to evaluate if their disease state may require them
to be admitted in a hospital for more dedicated care and treatment. The test kiosks at
hospitals have access to more accurate and fast testing equipments to evaluate the severity
and/or progress of the disease and will provide better decision points for doctors if a
tested patient must be admitted for clinical care.

In this project, we will source real data from one such hospital facility in New York -
located at the premises of The Brooklyn City hospital. The data used in the case study
includes day-wise and week-wise information over the period January 1 through Decem-
ber 31, 2021. This data includes the number of people who presented themselves at the
hospital test center after a preliminary positive result of tests conducted at their homes.
This data has been sourced from the official website whose link is provided here. For
convenience we have organized the data in a tabular matrix as provided at the end of this
chapter in Table 4.1. The tabular data can also be found in a spreadsheet named COVID-
data.csv.

4.3 Introduction: a gentle initiation to queues

We will discuss a simple n-server queuing system as a motivation to study continuous
stochastic processes within the framework of continuous Markov chains. This discussion
will depend on Poisson arrivals of clients. Therefore, it is prudent to revisit the definition of
a Poisson process.

Poisson process: Consider an arrival process that counts the number of arrivals over time.
N(t), t ≥ 0 is a Poisson process with rate λ > 0 that counts the number of arrivals if the
following statements hold true.

1. N(0) = 0.

2. N(t) has independent increments, i.e. the numbers of arrivals in two non-overlapping
intervals are stochastically independent.

https://data.cityofnewyork.us/Health/COVID-19-Daily-Counts-of-Cases-Hospitalizations-an/rc75-m7u3
https://235d9ee8-8e8c-4d7b-a842-264ad94cf102.filesusr.com/ugd/334434_5114facc856e49a3bf76d6a20ff27b41.csv?dn=Data%20COVID%20Brooklyn.csv
https://235d9ee8-8e8c-4d7b-a842-264ad94cf102.filesusr.com/ugd/334434_5114facc856e49a3bf76d6a20ff27b41.csv?dn=Data%20COVID%20Brooklyn.csv
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3. N(δt) ∼ Poisson(λδt), where N(δt) refers to the number of arrivals in duration δt.

A simple calculation (cf. sec. 5.3.6) shows that the inter-arrival times between Poisson
arrivals follow an exponential distribution with the same rate parameter. This will be an
important consideration in many of our discussions in this chapter. Let us return to our
example of the n-server queue.

Figure 4.2: A queue in
a bank with multiple
tellers.

Example: n-server FIFO queue

Consider a scenario where we have n servers which provide service in such a way that
the service times of each server is an i.i.d. random variable that is distributed accord-
ing to the exponential law with rate parameter µ. Clients enter a queue according to
a Poisson process with rate λ. The service principle follows a first in first out (FIFO)
law applied to the queue. Further, any arrival that finds all servers busy, leaves with-
out service. The latter condition (hereafter referred to cond++) is different from the
one shown in Figure 4.2 but we will consider it here in our calculations as an addi-
tional constraint. We ask the following question. If an arrival finds that all servers are
busy, then what is the expected number of busy servers observed by the next arriving
client? For convenience, we will refer to this client as client #13-A.

Solution: Before we proceed with the calculations, let us pause and reflect on the sit-
uation a little. When client #13-A arrives, it could find that all servers are busy if no
service was completed in the intervening time between its arrival and the exit of the
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previous customer who departed the queue on finding all servers to be busy. Alterna-
tively, client #13-A could find any of 0 ≤ m ≤ (n − 1) servers to be busy depending
on the number of services that were completed in the duration between its arrival and
the exit of the previous client who left out of frustration. And since there is no guar-
antee when client #13-A actually enters the queue and the fact that the service times
of any of the servers are not uniform, this is truly a stochastic process.
To proceed with our calculations, let us consider Tk to be the expected number of
busy servers found by client #13-A if there are currently k busy servers. Here the
word currently refers to the epoch of the exit of the frustrated client. We want to esti-
mate Tn. It turns out that the definition of Tk above is equivalent to the following: Tk

is the expected number of busy servers found by client #13-A in a k-server system
when there are currently k busy servers. The underlined phrase is true because
the fact that there will be at least (n − k) idle servers can be ignored because of the
memoryless (Markovian) property of exponential service times and exponential inter-
arrival times. The boundary condition T0 = 0 is self evident and needs no further
explanation. Our next objective will be to find T1 again for a 1-server system. In such
a case, either 1 or 0 servers can be found to be busy by client #13-A. Therefore,

T1 = (1)× Prob(client #13-A finds one server busy)

+(0)× Prob(client #13-A finds zero servers busy)

= (1)
λ

λ + µ

cf. equation 2.49

+ (0)
µ

λ + µ

=
λ

λ + µ
. (4.1)

For the general case, with k busy servers, we will obtain Tk by conditioning upon
what happens next. If we label an event of a new arrival or a completion of a ser-
vice to an alarm clock going off then with k busy servers, we will need k numbers
of exp(µ) alarm clocks and 1 number of exp(λ) alarm clock. We will use the follow-
ing two partitioning events to condition our calculation of Tk using the law of total
expectation.

1. Event E1: A service completion happens first during the intervening time before
client #13-A arrives.

2. Event E2: An arrival happens first (the arrival of client #13-A) before any server
becomes available.

Additionally, if τi, i = 1, 2, ..., k denotes time to complete a service by server i, then
the time till the next service completion after the exit of the frustrated client is dis-
tributed as min(τ1, τ2, ..., τk) ∼ exp(kµ). Therefore, Prob( event E1) = kµ

λ+kµ and
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Prob( event E2) = λ
λ+kµ . Now we will use the law of total expectation.

Tk = E(#busy servers
∣∣E1 & currently k busy servers)Prob(E1

∣∣ currently k busy servers)

= E(#busy servers
∣∣E2 & currently k busy servers)Prob(E2

∣∣ currently k busy servers)

= Tk−1
kµ

λ + kµ
+ k

due to condition cond++

λ

λ + kµ
. (4.2)

Here we have used the phrase #busy servers as a short-hand for ’number of busy
servers’. Now, we may use the above recurrence relation and find T2, T3, ... and we
list a few of them below.

T2 = T1
2µ

2µ + λ
+

2λ

2µ + λ

=
λ

λ + µ

2µ

2µ + λ
+

2λ

2µ + λ
.

T3 = T2
3µ

3µ + λ
+

3λ

3µ + λ

=
λ

λ + µ

2µ

2µ + λ

3µ

3µ + λ

+
2λ

2µ + λ

3µ

3µ + λ
+

3λ

3µ + λ
.

And in general,

Tn =
nλ

nµ + λ
+

n−1

∑
i=1

iλ
iµ + λ

n

∏
j=i+1

jµ
jµ + λ

. (4.3)

The above example is in fact an illustration of a continuous time stochastic process and is
associated with a continuous time Markov chain with rate parameters qi,i+1 = λi = λ and
qi,i−1 = µi = µ and a state space S =

{
0, 1, 2, ..., n

}
that denotes the number of busy servers

(or number of people in the system). These notations and the concept of a continuous time
Markov chain (CTMC) will be the subject of our study in the following sections.

Example: Stochastic arrivals follow a Poisson distribution

Consider identical and independent arrivals at a fixed rate λ on a linear time axis be-
ginning with the epoch t = t0 = 0 from the state E0. Ek denotes the event of the kth

arrival at epoch t = tk. Here the subscript refers to the number of arrivals up to that
instant. This stochastic process defines a jump transition from Ej to Ej+1 between two
successive arrivals. Whatever the state Ej at a certain epoch tj ≤ t < tj+1, the proba-
bility of a jump (an arrival) between epochs t and (t + h) (for small h > 0) is λh + o(h)
whereas the probability of more than one jump (arrival) is o(h). Define a random vari-
able Z(t) that counts the number of arrivals in an arbitrary interval of time of length t.
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Figure 4.3: An artist’s
rendition of queues at
the checkout counters
in a shopping mall. At
peak hour and dur-
ing festive season, the
mall manager will be
interested to know the
average number of peo-
ple in the queue at any
given point of time in
order to marshal his
employee resources
judiciously.

Show that

pn(t) = P
(
Z(t) = n

)
=

(λt)n

n!
e−λt. (4.4)

Solution: We will work with n ≥ 1. Consider the event at epoch t + h that is desig-
nated by the state En. The probability of this event is pn(t + h) as per the definition
above. This event can happen in three mutually exclusive manners as enumerated
below.

1. Event E1: The system was in state En at epoch t and no arrival happened between t

and t + h. The probability of this event P(E1) = pn(t)p0(h) = pn(t)
{

1− λh
}
+ o(h).

2. Event E2: The system was in state En−1 at epoch t and exactly one arrival happened

between t and t + h. P(E2) = pn−1(t)p1(h) = pn−1(t)
{

λh
}
+ o(h).

3. Event E3: The number of arrivals between epochs t and t + h is more than one and
the probability of such an event P(E3) = o(h) as defined in the problem statement.

Since the events E1, E2, E3 are mutually exclusive, the probabilities simply add up
and we have the following result.

pn(t + h) = pn(t)
{

1− λh
}
+ pn−1(t)

{
λh
}
+ o(h), (4.5)
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which may be rewritten as

pn(t + h)− pn(t)
h

= −λpn(t) + λpn−1(t) +
o(h)

h
. (4.6)

Upon evaluating the above in the limit h → 0, we have the following recurrence rela-
tion.

p′n(t) = −λpn(t) + λpn−1(t), n ≥ 1. (4.7)

When n = 0, the only possible route at our disposal is through the event E1 which
leads to p′0(t) = −λp0(t). The boundary condition for n = 0 is p0(0) = 1 whence we
get p0(t) = e−λt. Using this result in the recurrence relation 4.7 and solving for p1(t)
we obtain p1(t) = λte−λt that is in agreement with equation 4.4. Proceeding in this re-
cursive manner, we can deduce the generic relation 4.4 for pn(t).

Note: The little-o notation used in the above example is defined as follows: limh→0
o(h)

h = 0.1 1 Equivalently, we say f (n) =
o
(

g(n)
)

if limn→∞
f (n)
g(n) = 0.

4.4 Continuous Time Markov Chains (CTMC)

We will begin this section by revisiting the Markov property in the context of a continu-
ous time stochastic process. We will then deduce an equation whose solution generates the
stationary distribution of the stochastic process. This result will enable us to investigate
asymptotic behavior of queuing systems with wide economic implications for businesses to
conduct their operations efficiently by allocating optimal resources.

4.4.1 Markov property for continuous time processes

Consider a continuous time stochastic process
{

X(t)
}

t≥0 which takes on discrete values
(states) from the state space S . The Markov property2 for continuous time stochastic pro- 2 Markov property is also

colloquially known as the
memoryless property.

cesses can be stated as follows.

P
(
X(t) = j

∣∣X(s) = i, X(tn−1) = in−1, ..., X(t1) = i1
)
= P

(
X(t) = j

∣∣X(s) = i
)
; (4.8)

where 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ s ≤ t and i1, i2, ..., in−1, i, j ∈ S are the (n + 1) states in the
state space S for all n ≥ 1, n ∈ I+.

4.4.2 Definition: Continuous time Markov chains

A continuous time stochastic process
{

X(t)
}

t≥0 is called a continuous time Markov chain
(CTMC) if it obeys the Markov property 4.8. Additionally, a CTMC may be time-homogeneous
(or stationary) if it satisfies the condition discussed below.

4.4.3 Time-homogeneity of Markov chains

We say that a continuous time Markov chain is time-homogeneous if for any s ≤ t and any
states i, j ∈ S , the following is true.

pi,j(t− s) ≡ P
(
X(t) = j

∣∣X(s) = i
)

= P
(
X(t− s) = j

∣∣X(0) = i
)

= P
(
X(t1) = j

∣∣X(s + t1 − t) = i
)
. (4.9)
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The important thing to note in the above statement is that the conditional probabilities do
not depend on any particular epoch but only on the interval (t− s). Such a time-homogeneous
process is also a stationary process.3 It is essential to emphasize that not all CTMC are time- 3 Intuitively, this means that

whenever the process enters
state i, the way it evolves
stochastically from that epoch
is the same as if the process
started in state i at time 0.

homogeneous (or stationary) but in this chapter we will be mostly concerned with time-
homogeneous stochastic processes.

4.4.4 Holding time of a Markov chain

When the stochastic process enters state i, the time it spends in that state before it leaves
state i is called the holding time Ti. if the arrival rate of this process is λi, then Ti ∼ exp(λi) as
was the case in the introductory example of this chapter.

Figure 4.4: Probability
distributions associated
with a Poisson point
process.

Recall that for a discrete stochastic process such as the discrete time Markov chain, the
probability of transition from state i to state j, denoted by pij, along with the initial set of
probability distribution, completely determines the state of the system at all latter times.
For a CTMC, the rate at which events occur not only characterizes the epochs of state transi-
tions4 but also determines the long-run distribution of states of the system. We will devote 4 This is true in the sense of a

probability distribution.the next few sections to illustrate these facts in a rigorous manner.
In order to deduce a model of the generator of this continuous time Markov chain, we

will have to begin by defining the rates as follows. Let qi,j is the rate at which the system
goes from state i to state j. This is akin to the rates at which the exponential alarm clocks
of section 4.3 go off. These rates are functions of time as are the probability transitions, i.e.
pi,j ≡ pi,j(t) and qi,j ≡ qi,j(t). Since the pi,js are probabilities, it should make sense to define
them as follows.

pi,j :=
qi,j

∑j∈S qi,j
. (4.10)

If we denote vi = ∑j∈S qi,j < ∞, then the rates may be defined as follows.

qi,j := vi pi,j. (4.11)

By definition we have qi,i = 0. Further, if vi = 0, then state i is an absorbing state. The entries
pi,j constitute the stochastic matrix P ≡ P(t). The entries qi,j constitute the generator matrix
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for reasons that will become clear during the ensuing discussion. It may be noted that vis
and pi,js can be computed from the qi,js. Further, because qi,js are essentially rates, they are
positive quantities.

4.4.5 Chapman-Kolmogorov equation for CTMC

Analogous to the discrete case (cf. equation 3.6), the Chapman-Kolmogorov equation for
CTMC is presented below.

pi,j(t + s) = ∑
k∈S

pi,k(t)pk,j(s) = ∑
k∈S

pi,k(s)pk,j(t) (4.12)

is the (i, j)th entry of the matrix P(t + s) = P(t)P(s). The Chapman-Kolmogorov equation
will be used to derive the most important result of this chapter known as the Kolmogorov
backward and forward equations. This is explained in the following paragraphs.

4.4.6 Kolmogorov equations and the generator matrix

Let us reconsider some of the ideas we used in solving the last example problem of section
4.3. In that case, since we had an arrival process, and we assumed that we will allow for
only one arrival at a time for all practical purposes, the transitions between the states hap-
pened in increments of one. However, we will relax this restriction; in the case of a general
CTMC (which may not be an arrival process only but may capture something far broader
in scope) we will allow for successive transitions between states i and j which need not
only differ by one. In the set-up of our previous example, j was necessarily i + 1. However,
the transitioning events are still the same in the infinitesimally small duration h, namely,
E1, E2, and E3 with the same probabilities. The only difference in the present case is that
λ = λi = vi = ∑j∈S qi,j as this is the most generic form of the rate of transition emanating
from state i. One may pose a very pertinent question here - why is the rate of transition from
state i given as a sum over qi,js? In order to understand this formulation, we invite the reader
to think through the motivating example of this chapter on the n-server queuing model. In
that case, we had k servers, so the time until one of those servers completed service was dis-
tributed as exp(kµ). In other words, the servers became available at the rate of sum of k µs,
which is analogous to the rate ∑j∈S qi,j, the sum over all the rates of transitions from state i.

In order to derive a differential equation for the probability transitions, we will begin with
the Chapman-Kolmogorov relation 4.12.

pi,j(t + h) = ∑
k∈S

pi,k(h)pk,j(t)

= pi,j(t)
{

1− vih + o(h)
}
+ ∑

k ̸=i
pi,k(h)pk,j(t)

= pi,j(t)
{

1− vih + o(h)
}
+ ∑

k ̸=i
pk,j(t)

{
pi,kvih + o(h)

}
. (4.13)

The first term on the r.h.s. of the above equation stems from an event of the type E1 (cf. last
example of sec. 4.3), whereas the second term arises from events of the types E2 and E3.
The computation of pi,k(h) is performed by applying the law of total probability and upon
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recalling.

pi,k(h) = P
(
X(h) = k

∣∣X(0) = i, ∆E2
)

P(∆E2)

+P
(
X(h) = k

∣∣X(0) = i, ∆E3
)

P(∆E3)

= pi,k
(
vih
)
+ p2

i,k
(
o(h)

)
= pi,k

(
vih
)
+ o(h). (4.14)

Here ∆Ei, i = 2, 3 is the event of one jump transition (for i = 2) and more than one jump
transitions (for i = 3) when the system migrates from state i to k as is explained in the last
example of section 4.3. Re-arranging the terms in equation 4.13 and dividing all the terms by
h followed by evaluating the terms in the limit h→ 0, we get

p′i,j(t) = ∑
k ̸=i

qi,k pk,j(t)− vi pi,j(t), (4.15)

Here we have used the definition of the transition rates qi,k = vi pi,k. In matrix form, equation
4.15 can be expressed as follows.

P′(t) = GP(t), (4.16)

or equivalently, (
P′(t)

)
i,j
=

(
GP(t)

)
i,j

. (4.17)

Equations 4.15-4.17 are called the Kolmogorov backward equations. The infinitesimal generator
matrix G ≡

(
gi,j
)

is summarized below.

gi,j = qi,j = vi pi,j, ∀i ̸= j, (4.18)

gi,i = −vi, (4.19)

with boundary conditions P(0) = I, where I is the identity matrix.
Likewise, we can derive the Kolmogorov forward equations which we simply state below in

matrix form.

P′(t) = P(t)G. (4.20)

The solutions to the Kolmogorov equations 4.15-4.20 with the prescribed boundary condi-
tions can be computed very easily in the form of matrix exponentials.

P(t) = etG := I + tG +
(tG)2

2!
+ · · ·. (4.21)

In the case of a finite state space system, the solution 4.21 can be well approximated by trun-
cating the terms of the infinite sum in 4.21. The solution P(t) = etG underscores the impor-
tance of the generator matrix G vis-à-vis a continuous time Markov chain because it com-
pletely generates the solution P(t). Consequently, G plays an important role in obtaining
the stationary distribution of a Markov chain. This implies that in the case of CTMC (unlike
in the case of DTMC), the rates of state transitions completely determine the solutions of
the system. Further, the CTMC with the generator (or rate) matrix G (or equivalently

(
gi,j
)
)

bears with it an embedded DTMC with transition probabilities prescribed by the matrix
(

pi,j
)
.
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4.4.7 Stationary distribution of CTMC

Consider a CTMC
{

X(t)
}

t≥0 with finite state space S ,5 generator G, and matrix of probabil- 5 Here we will assume that
the cardinality of the set S is
|S|.

ity transition functions P(t). The |S|-dimensional row vector π ≡ (πi)i∈S with πi ≥ 0, ∀i
and with the constraint ∑

i∈S
πi = 1 is a stationary distribution of the Markov chain if

π = πP(t), ∀t ≥ 0. (4.22)

Example: πG = 0 describes the stationary solution of CTMC

Use the generator matrix G to deduce a condition for stationarity of a CTMC.

Solution: If π is a stationary distribution of a Markov chain, then the following are
true.

π = πP(t), ∀t ≥ 0,

=

cf. equation 4.21 whence P = etG = · · ·

π
∞

∑
n=0

(tG)n

n!
.

⇐⇒

this symbol stands for if and only if

π −π =
∞

∑
n=1

tn

n!
πGn

⇐⇒ 0 =

sum of positive terms is zero⇐⇒ summand is zero.

πGn, ∀n ≥ 1,

⇐⇒ πG = 0 . (4.23)

Using equation 4.23 to find the stationary distribution of states is computationally more
convenient than using equation 4.22. In the former case, one simply has to solve a system of
|S| linear equations. Of course the solution must be compliant with the fundamental axiom
of probability ∑

i∈S
πi = 1.

For a CTMC
{

X(t)
}

t≥0, the stationary probability distribution is also the limiting proba-
bility (t→ ∞), i.e.

lim
t→∞

pi,j(t) = lim
t→∞

P
(
X(t) = j

∣∣X(0) = i
)
≡ πj. (4.24)

4.4.8 Global balance equations πG = 0

Let us investigate the equation 4.23 further. In component form, equation 4.23 is ∑
i∈S

πigi,j =

πjgj,j + ∑
i ̸=j

πigi,j = 0. These |S| equations can be written more explicitly by referring to the

equations 4.18-4.19.

πjvj = ∑
i ̸=j

πiqi,j, (4.25)
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where vj = ∑
i∈S

qj,i. Each of the terms in the above equation can be interpreted in the follow-

ing manner.

Figure 4.5: A huge pile
of books that can stand
firm against a gust of
breeze. Not only are
individual books in bal-
ance with their neigh-
bors but the whole pile
is in balance as a whole.

1. πj: This term refers to the long run proportion of time the system stays in state j.

2. vj = ∑
i∈S

qj,i: This term estimates the rate of departure from state j when the system is in

state j.

3. πjvj: This term computes the long run rate of leaving state j.

4. πiqi,j: This term calculates the long run rate of going from state i to state j.

5. ∑
i ̸=j

πiqi,j: This term estimates the long run rate of going to state j starting not from state j.

Therefore, equation 4.25 is a statement of balance between flux out of state j and flux into
state j, i.e. it is a statement of dynamic equilibrium. This is why the equation 4.23 is known
as the global balance equation or simply the balance equation.

Figure 4.6: Schematic
representation of the
generator (rate) matrix.

Example: State of a machine prototype

A new prototype washing machine using a revolutionary technology is under devel-
opment. During the development cycle, it passes through one of three distinct states,
viz., normal, test, and repair modes. The rate diagram of the states depicting the en-
tries of the generator matrix is shown in the figure in the margin. Find the stationary
distribution of states.

Solution: The generator matrix can be deduced from the rate diagram as follows

G =

−1 1 0
2.5 −5 2.5
3 0 −3

. In order to find the stationary distribution of states, we must

solve πG = 0 and π1 + π2 + π3 = 1. The former simplifies to π2 = 3π3
2.5 and π1 = 5π2.

When we use this simplification in the latter equation, we obtain π3 = 5
41 . Substitut-

ing this in the previously deduced results, we obtain π2 = 6
41 and π1 = 30

41 . Thus
the stationary distribution of states of the prototypical washing machine is

( 30
41

6
41

5
41
)

corresponding to the normal, test, and repair modes.

4.4.9 Detailed (or local) balance

For a CTMC with a generator matrix G ≡
(
qi,j
)
, if we can find a distribution of states π such

that for every pair of states i and j, the following relation holds

πiqi,j = πjqj,i, (4.26)

then it can be easily shown, by summing over all the states in S , that π is a stationary dis-
tribution and satisfies the global balance equation 4.25. Let us sum over all the states i to
obtain ∑

i∈S
πiqi,j = ∑

i∈S
πjqj,i = πj ∑

i∈S
qj,i = πjvj, which is the equation 4.25.6 The detailed 6 The equivalent detailed

balance for DTMC is πi pi,j =
πj pj,i , ∀i, j ∈ S .
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balance may not always hold even when the global balance holds. The converse is always
true as shown above.

Figure 4.7: Everything
is in perfect balance.

When does detailed balance not hold for sure? A quick way to check this is to inspect the
rate or the generator matrix G and see if there are any rates qi,j and qj,i such that qi,j > 0
and qj,i = 0 (or conversely qi,j = 0 and qj,i > 0). If any of these pathological cases exist
for any pair i, j, then the local analysis using the detailed balance condition to estimate the
stationary distribution will be futile.

Theorem: A CTMC is reversible if and only if the detailed balance condition holds for every
pair (i, j) in S .

4.4.10 Application of detailed balance condition

For the following two well-known continuous stochastic processes, the detailed balance does
hold and is useful to find the stationary probability distribution of states. They are

1. birth-death processes,

2. M/M/1 queues (Poisson arrivals and exponential service rate by a one-server system).

We discuss these two stochastic processes in detail in the subsequent sections of this chapter.

4.5 Birth and death processes

A birth and death process is a homogeneous stochastic Markov process where the transi-
tions between two successive epochs7 constitute either a jump by one (i.e. state i goes to 7 Here an epoch is a time

instant when an event (or
a transition of state) occurs
such as an arrival or a death,
etc.

state i + 1) or a drop by one (i.e. state i goes to i − 1). In other words, only nearest-neighbor
transitions are permissible. Since this stochastic process is a continuous time process, the
transitions between states happen at a prescribed rate.

qi,i+1 = λi > 0, i ≥ 0, (birth rates); and (4.27)

qi,i−1 = µi > 0, i ≥ 1, (death rates). (4.28)

The state space S is over the space of all whole numbers.

Figure 4.8: Carcinogenic
growth of cells and
apoptosis can be stud-
ied using birth and
death models.

4.5.1 Example: Stationary distribution of a birth and death stochastic process

Deduce the stationary distribution of the birth-death process defined in equations 4.27

and 4.28.

Solution: Since births and deaths are well-defined and non-trivial at every point on
the state space, it is easy to validate by inspection that the local analysis of the de-
tailed balance will be useful to find the stationary distribution of states. Therefore, we
begin by writing the detailed balance equations at every point of state transition as
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follows.

πiqi,i+1 = πi+1qi+1,i

=⇒ πiλi = πi+1µi+1, ∀i ≥ 0;

=⇒ πi+1 =
λi

µi+1
πi

=

recursively

λiλi−1

µi+1µi
πi−1

·
·
·
=

continuing recursively

λi · · · λ0

µi+1 · · · µ1
π0. (4.29)

Additionally, the πis must satisfy the axioms of probability; specifically, the relation
∑

i∈S
πi = 1 must hold. Re-indexing i = j − 1 in equation 4.29 and using the aforemen-

tioned normalization of the probabilities, we have

π0 +
∞

∑
j=1

πj = π0 +
∞

∑
j=1

λj−1 · · · λ0

µj · · · µ1
π0 = 1

=⇒ π0

{
1 +

∞

∑
j=1

λj−1 · · · λ0

µj · · · µ1

}
= 1

=⇒ π0 =
1

1 +
∞
∑

j=1

λj−1···λ0
µj ···µ1

. (4.30)

We must ensure that the infinite power series in the denominator of 4.30 is finite.

Figure 4.9: A repairman
servicing a machine in
a factory line.

4.5.2 Example: servicing of machines by a repairman

Let us consider a factory that houses and operates m machines. The machines are
also serviced by a repairman in case any of them break down and need repair. The
repairman services one machine at a time on a first-come-first-serve basis, so when
more than one machine is dysfunctional, then the idle machines go in a service queue.
Each of these machines can go from a working state to a service state (due to a break-
down/failure) within a randomly distributed time T f ∼ exp(λ) (measured from any
given time). Further, the service time Ts of each machine is distributed according to a
rate µ exponential distribution, Ts ∼ exp(µ). Answer the following questions.

1. What is the stationary distribution of states of working machines?

2. What is the expected number of machines in the waiting line?
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Solution: Let us define the state of the system Sk when k of the m machines are idle
due to a failure. This is a birth and death process because only one of the two transi-
tions is possible: (i) Sk → Sk+1 when a new failure happens, and (ii) Sk → Sk−1 when
a repair is successfully completed and a machine is brought back to function. We will
begin by writing the detailed balance relations:

πiqi,j = πjqj,i,

πtqi,i+1 = πi+1qi+1,i,

πi(m− i)λ = πi+1µ. (4.31)

The jump rate qi,i+1 is (m − i)λ can happen owing to any of the (m − i) working ma-
chines becoming dysfunctional but the death rate is constant qi+1,i = µ because the re-
pairman works on only one machine at a time until it is restored. Setting j = i + 1,
equation 4.31 can be re-written as

πj−1 =
µ

λ

1
m− j + 1

πj. (4.32)

In order to deduce a recursive relation for the stationary distribution of working ma-
chines, we set j = m in equation 4.32

πm−1 =
µ

λ

1
1!

πm, (4.33)

πm−2 =

(
µ

λ

)2 1
1× 2

πm, (4.34)

· = (4.35)

· = (4.36)

· = (4.37)

πm−k =

(
µ

λ

)k 1
k!

πm. (4.38)

Next we will use one of the axioms of probability

m

∑
k=0

πm−k = 1

to find πm = 1

1+
m
∑

k=1

1
k!

(
µ
λ

)k . The stationary distribution of working machines is listed

below.

πm−k =

(
µ

λ

)k 1
k!

1

1 +
m
∑

k=1

1
k!

(
µ
λ

)k . (4.39)

This is known as the famous Erlang’s loss formula.

1. Special cases emerge depending on different values of k; eg., k = m in equation 4.39

gives us π0, which can be interpreted as the long-run probability that the repair-
man is idle (all machines working).
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2. The expected number of machines in the service queue (awaiting repair) is given by

Mq =
m−1

∑
k=0

kπk+1

=
m

∑
k=1

kπk − (1− π0). (4.40)

Summing equation 4.31 over i = 0 through m yields mλ − λ
m
∑

k=1
kπk = µ(1 − π0),

which in conjunction with equation 4.40 gives us the expected number of machines
in the service queue.

Mq = m− λ + µ

λ
(1− π0). (4.41)

We leave the readers here with an exercise to work out a model and its solution akin to
the example 4.5.2 above but with r < m repairmen who can work concurrently to repair the
idle machines.

4.6 Queues (Erlang-T models)

All it provided was hope for people to cling to and a reason to stay in the queue.8 At some point in 8 Excerpt from The Queue by
Basma Abdel Aziz.our lives, a good majority of us have gone through this emotion while waiting in a queue

either at a train ticket counter or voting booth or perhaps any of the many queues we may
have inhabited, albeit for a fleeting moment when compared to the vastness of our lived
experience. A common thread of thoughts that we share in such moments is how long do
I have to stay in the queue? or how many people on an average are in the queue at a certain time?
These questions and their answers not only have an ontological basis but also a very practi-
cal material value. Systems and businesses operate around finding optimal answers to such
questions. We will formally study single and multi-server queues in this section and also in
the chapter project.

Figure 4.10: British
statistician David
George Kendall known
for his pioneering work
in queuing theory (cour-
tesy: Wikimedia Com-
mons).

4.6.1 M/M/n queue and Kendall’s notation

The server-queue models that will be discussed in this chapter have Poisson arrivals.9 We

9 cf. PASTA (Poisson Arrival
See Time Averages) - here
the state of the queue-server
system is invariant in distri-
bution to the location of the
observer (the observer can
be within the system/can be
arriving in the queue or the
observer can be fully outside
the system).

will use Kendall’s notation here M/M/n, where the first M from the left stands for the
memoryless property of the exponentially distributed inter-arrival time with rate parameter
λ, the second M stands for the memoryless property of the exponentially distributed service
times with rate parameter µ, and n refers to the number of servers. Let X(t) be the random
variable that denotes the number of customers in the system at time t.

We will begin our analysis when n = 1. We summarize below the main attributes of the
M/M/1 system.

1. It is a single server system.

2. Customers enter the system and arrive in a queue if the server is busy. If the server is
available, then they proceed straight to service.

3. Arriving clients are served by the server on a first-come-first-serve basis.
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4. Upon completion of service, the clients depart the system.

The M/M/1 model is a birth and death system with state space S =

{
0, 1, 2, ...

}
. The

birth and death rates are λi = λ, ∀i ≥ 0 and µi = µ, ∀i ≥ 1. Recall from the birth and death
model of the previous section, i.e. equations 4.29 and 4.30, the necessary condition for a

stationary distribution is 1 +
∞
∑

i=1

(
λ
µ

)i

< ∞ or
∞
∑

i=0

(
λ
µ

)i

< ∞. This geometric series converges

if λ
µ < 1. This means that for a stationary distribution of states to exist (steady state), λ < µ.

Thus the stability criterion for the M/M/1 queue is

arrival rate λ < service rate µ . (4.42)

4.6.2 Example: Stationary distribution of a stable M/M/1 queue

Find the stationary distribution of states for an M/M/1 queue with arrival and ser-
vice rates λ and µ respectively. Assume that λ < µ.

Solution: Based on equation 4.30, we deduce π0 = 1

∞
∑

i=0

(
λ
µ

)i =

(
1

1− λ
µ

)−1

= 1− λ
µ . Here

we have used the result of the sum of an infinite geometric series.
Likewise, using equation 4.29, we have

πi =
λi−1 · · · λ0

µi · · · µ1
π0

=

(
λ

µ

)i

π0

=

(
λ

µ

)i(
1− λ

µ

)
, ∀i ≥ 1

Therefore πi ∼ geom0

(
1− λ

µ

)
. (4.43)

Thus πi has the distribution of a geometric random variable that counts the number of
failures10 before first success with probability p = 1− λ

µ .

10 Here failures must be counted as number of people ahead of the currently arriving person who will be
served before the currently arriving person is served.

4.6.3 Little’s law

In a general queuing system, let us say the nth arrival spends Wn units of time in the system
(time spent in the queue + service time). Wn is known as the sojourn time of the nth arrival.

The average sojourn time is E(W) ≈ limn→∞
1
n

n
∑

i=1
Wi.11 The average rate of arrivals is λ = 11 E(W) refers to the average

sojourn time among a large
number of clients who en-
tered (and exited) the system.

limt→∞
N(t)

t where N(t) denotes the number of arrivals by time t. Further, we define by L(t),
the total number of clients in the system (clients in queue + clients being served) at time t
and we define by L = limt→∞

1
t
∫ ∞

0 L(τ)dτ, the (temporal) average number of clients in the
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system.12 Then the Little’s law states that the following relation holds. 12 The temporal average is
also well approximated by an
ensemble average (expected
value) because a stationary
CTMC is always ergodic.
Conversely, if the ergodicity
condition is satisfied by a
CTMC, then it surely has a
stationary solution.

L = λE(W). (4.44)

L is thus the average size of the system (in terms of the number of clients in the queue and
the number of clients being served).

4.6.4 Mean sojourn time E(W) and mean queue size E(πQ) of an M/M/1 queue

Let us once again consider the M/M/1 queue as above. We now know that the stationary
distribution of such a queue is a geometric distribution with parameter p = 1− λ

µ , π ≡ πi ∼
geom0(1− ρ) where ρ = λ

µ . E(π) = 1−p
p = ρ

1−ρ is the expected number of clients in the
stationary M/M/1 queue. If Wn is the sojourn time of client n, then by applying Little’s law
4.44 and invoking ergodicity, we get

E(π) = λE(W) =
ρ

1− ρ
, (4.45)

where W is the average time spent by a client in the system. W = TQ + TS where TQ is the
random time spent by a client in the queue (not including time spent during service) and TS

is the random time spent by the client while being served. From equation 4.45, we obtain the
mean sojourn time

E(W) =
1
λ

ρ

1− ρ
=

1
µ(1− ρ)

. (4.46)

Taking the expectation of W = TQ + TS and using E(TS) = 1
µ , we obtain the average time

spent by a client in the queue (discounting the time of service) as follows.

E(TQ) = E(W)− E(TS) = · · · =
ρ

µ(1− ρ)
. (4.47)

By applying the Little’s law exclusively to the queue, we get the average number of people
in the queue (queue size) in the long run as follows.

E(πQ) = λE(TQ) = · · · =
ρ2

1− ρ
. (4.48)

Further, since π = πQ + πS, we obtain the average number of clients being served in the
long run as follows.

E(πS) = E(π)− E(πQ) = · · · = ρ =
λ

µ
. (4.49)

Similar results can be deduced for a generic case such as that of an M/M/n queue or an
M/G/n queue that may not have an exponential service time. We will see an application
of the former in the chapter project and similar examples in the exercise problems of this
chapter.
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Example: Delay in a communication channel

A communication channel has a capacity of 1000 bits per second. This channel is used
to carry 8 bit characters. The channel can handle a total call volume of 6000 characters
per minute. Estimate the average numbers of characters waiting to be transmitted and
the mean sojourn time of transmission.

Solution: The arrival rate λ = 6000
60 = 100 characters/sec. The service rate µ = 1000

8 =

125 characters/sec. The utilization factor is ρ = λ
µ = 0.8. E(πQ) = ρ2

1−ρ = 3.2 is the

average number of characters in the queue. The mean sojourn time is E(W) = E(π)
λ =

ρ
1−ρ

100 =
0.8
0.2

100 = 4
100 = 0.04 seconds = 40 milliseconds.

Figure 4.11: Modern
technology and busi-
ness operations rely
heavily on efficient
communication chan-
nels.

4.7 Chapter project: Queues and crowd management at COVID test centers

4.7.1 Interlude: The mathematical technology of analyzing and managing queues

As people start showing up at the test kiosk according to a Poisson process, the coun-
ters at the kiosks start testing the patients and the queue starts growing. We will use the
M/M/n queuing model to answer the following questions. The arrival rate λ must be
estimated from the data provided in Table 4.1. The service time at the test-counters can be
assumed to follow an exponential distribution with rate µ = 12 per hour.

1. Give a condition in terms of the system utilization factor ρ so that the queue is stable
(i.e. the queue does not grow in an unbounded manner).

2. Based on the data provided in the table, estimate the arrival rate λ.13 13 In this section, consider a
serpentine queue, i.e. a single
queue. In the final section of
the chapter project, we will
ask the readers to compare
this type of queue with a
multiple queue version of the
system.

3. What is the minimum number of test counters required to satisfy the stability condi-
tion of question 1?

4. Deduce the expression for the steady-state probability distribution πk for the number
of patients k in the system upon a random arrival. Consider both the cases when k ≤ n
and k > n.

5. What is the probability π0 that all test counters are idle upon a random arrival? In
other words, what is the probability that no patient is currently being tested?

6. Compute the probability that all test counters are busy upon a random arrival.

7. What is the average number of patients in the system at any given instant? Use this
result and the Little’s theorem to find the mean sojourn time of a patient.

4.7.2 M/G/n queues and the Pollaczek-Khinchin formula

Once again we will restrict our analysis to n = 1 in this section. More importantly, we will
relax the memoryless constraint of service times and consider a general probability distri-
bution for the service times with a mean service time of 1

µ , µ > 0. The arrivals continue
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to follow a Poisson distribution with rate λ > 0. The utilization factor ρ = λ
µ < 1 ensures

that we have a stable queue with a stationary distribution of states (number of clients in the
system). We will not derive the formula for the stationary distribution but simply compute
the mean sojourn time and the average size of the queue at steady state.

At the outset, let us define the relevant random variables.

1. TSi : service time experienced by client i,

2. Nq: number of clients in the queue when client i = (Nq + 1) arrives,

3. Tq: the time spent by the ith client in the queue,

4. Ri: residual service time of the client in service at the instant when client i arrives,14 14 Ri ≡ 0 when client i enters
an empty system.

5. Wi: sojourn time of a client i in the system,

6. Bi: event when the ith client arrives and finds the server busy and Nq clients ahead of it in
the queue, and

7. Ii: event when the ith client arrives and finds the server available available for service
(idle).

Figure 4.12: Austrian-
French mathematician
Felix Pollaczek known
for his work on queuing
models and probability
theory (courtesy: Wiki-
media commons).

The probability that the ith client finds the server busy upon arrival is ρ = λE(TS) =
λ
µ < 1 for a stable queue as stated earlier. Since we are primarily interested in analyzing the
stationary state of the system, we will drop the subscript i from the variables. The sojourn
time at steady state may be expressed as follows.

W = Tq + TS, (4.50)

E(W) = E(Tq) +
1
µ

. (4.51)

Note that we have not included R in W because it is already absorbed in the term Tq. We
will use the law of total expectation to compute

E(Tq) = ρE(Tq
∣∣B) + (1− ρ)E(Tq

∣∣I) = ρE(Tq
∣∣B),

which results from the fact that Tq ≡ 0 when the event I happens. In order to compute the
average time spent in the stationary queue by a client, we use the following result.

E(Tq
∣∣B) = E(R + TS1 + TS2 + · · ·+ TSNq

∣∣B)
= E(R

∣∣B) + E(TS1 + TS2 + · · ·TSNq

∣∣B)
=

cf. exercise on random sums of ch. 1

E(R
∣∣B) + E(TS

∣∣B)E(Nq
∣∣B)

= E(R
∣∣B) + λ

µρ
E(Tq). (4.52)

Here E(Nq
∣∣B) is evaluated by the law of total expectation E(Nq) = E(Nq

∣∣B)P(B)+E(Nq
∣∣I)P(I)

whence the second term on the r.h.s. is zero and E(Nq
∣∣B) = µE(Tq) using Little’s law

E(Nq) = λE(Tq). Here we have used ρ = P(B). Thus we have

E(Tq) =
ρE(R

∣∣B)
1− ρ

. (4.53)
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We will now invoke a useful theorem without providing a proof and use it to find the av-
erage time spent by a client in the stationary queue. Interested readers may refer to this

article15. The mean residual service time E(R
∣∣B) is given by 1

2
E(T 2

S )

E(TS)
= µ

2 E(T 2
S ). Using this 15 W. C. Chan, T. C. Lu,

and R. J. Chen. “Pollaczek-
Khinchin formula for the
M/G/I queue in discrete
time with vacations”. In: IEE
Proc.-Comput. Digit Tech. 144.4
(1997), pp. 222–226

result, we find

E(Tq) =
λE
(
T 2

S
)

2(1− ρ)
. (4.54)

The mean sojourn time is given by

E(W) =
λE
(
T 2

S
)

2(1− ρ)
+

1
µ

. (4.55)

Equations 4.54 and 4.55 are known as the Pollaczek-Khinchin formula. The average number
of the clients in the system N can be obtained by applying Little’s law.

N = λE(W) = ρ +
λ2E

(
T 2

S
)

2(1− ρ)
. (4.56)

Example: An M/G/1 queue in action

Consider a single server M/G/1 queue at steady state. Arrivals happen according
to a Poisson distribution with rate λ = 6 per hour. The service time is uniformly
distributed between 7 and 9 minutes. Answer the following questions.

1. What is the average number of clients in the queue?

2. What is the average waiting time in the queue?

3. What is the average number of clients in the system?

4. What proportion of time is the server idle?

Solution: We will fix the time units to minutes for consistency. Therefore, λ = 1
10 per

minute. E(TS) = 7+9
2 . Therefore the service rate is µ = 1

8 per minute. Var(TS) = σ2
S =

(9−7)2

12 = 1
3 .

1. Average number of clients in the queue Nq = λE(Tq) =
λ2E(T 2

S )

2(1−ρ)
=

λ2σ2
S+λ2 1

µ2

2(1−ρ)
=

λ2σ2
S+ρ2

2(1−ρ)
≈ 1.61.

2. Average waiting time in the queue E(Tq) =
Nq
λ ≈ 16.1 minutes.

3. Average sojourn time in the system is given by the Pollaczek-Khinchin equation 4.55.
E(W) ≈ 24.1 minutes. Now using Little’s law N = λE(W) = 2.41 are the average
number of clients in the system.

4. Proportion of the time the server stays idle is equal to 1− ρ = 1− λ
µ = 1− 0.8 = 0.2.
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There are many different queuing models commensurate with a variety of scenarios. In-
terested readers may want to check out the textbooks mentioned in the chapter bibliography
for a detailed treatment on queuing models.

4.8 Chapter project: Queues and crowd management at COVID test centers

4.8.1 Epilogue: Simulating the queue using Matlab’s Simulink

We will simulate the behavior of the queue at the test kiosks using the Simulink feature
of Matlab. Using these simulations we will be able to compare the behavior of two dif-
ferent types of queues, viz., the serpentine queue and the multi-line queue.16 The Simulink 16 Eg., the multi-line queue of

a 3 server system will have
three different queues leading
to each of the servers. A
randomly arriving client will
choose the shortest available
queue.

environment is available within the SimEvents module of Matlab. In order to access these
built-in Simulink queuing models please ensure that the Simulink toolbox is installed in
your computer.

Description of the Simulink queuing model:

The Simulink model is available with two parallel versions of a simple model of n ser-
vice counters: (i) one that uses n separate queues, and (ii) one with a single serpentine
queue that provides service to all patients. Patients arrive at random with exponentially
distributed inter-arrival times and they are simulated using entities in SimEvents. The
exponential service times are also simulated using the relevant SimEvents sub-module.
The average arrival time is set to a default value 1

λ = 2 hours and the average service time
is set to a default value of 1

µ = 1 hour. For the multi-line queue, each patient is cloned af-
ter a generation so that the different line configurations can be exercised identically. The
Matlab-generated schemata is shown in Figure 4.13

Figure 4.13: Queuing
model of the SimEvent
module of Simulink
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Multi-line queues

In this model, multi-line queues feed the n service counters. Arriving clients (patients)
are routed to the shortest queue. Each queue then feeds the service representing a check-
out together. This server holds the patient for the amount of time that was set up during
generation. Figure (4.14) represents the sub-model of a multi-line queue that is embedded
into the main simulation model.

Figure 4.14: Multi-line
queuing model. The
example shown here
corresponds to n = 4.

Serpentine Queue

In this model, a single queue is involved that feeds all n servers via a switch that routes
customers to a free service counter when one becomes available. Figure (4.15) represents
this model.

Figure 4.15: Serpentine
queuing model
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Output of Simulink

The output of this simulation is presented in the form of plots as shown in figure (4.16)
which displays the average sojourn time of a patient for both cases, i.e. the multi-line
queuing model, and the serpentine queuing model.

Figure 4.16: Average
sojourn time for the
multi-line queue (left),
and the serpentine
queue (right).

Steps to simulate the queue using Simulink

We now provide the detailed steps to run the simulations using Simulink.

Step 1: Execute the command openExample(’simevents/QueuingStrategiesExample’) in
the MATLAB "Command window". This should prompt a new window which contains
the model as shown in Figure (4.17):

Figure 4.17: Simulink
model
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Step 2: Now in order to change the parameters (arrival rate and service rate) as required,
double-click on the block model "Customer (Entity Generator)" shown in figure 4.17. A
dialogue box named "Block Parameter: Entity Generator" (cf. Figure 4.18) will appear.

Figure 4.18: "Entity
generation" section

Step 3: Change the value of the mean in "Entity generation" (see figure 4.18) and "Event
actions" (see Figure 4.19) as required. Finally, click on "Apply" followed by "OK".

Figure 4.19: "Event
actions" section

Step 4: Now "RUN" the Simulink model (as seen in Figure 4.17). This will produce the
results in the form of plots (see Figure 4.20)
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Figure 4.20: "Scope
window" displaying the
results for sojourn time.

Consider the answer for the minimum number of servers in question 3 to be n̂. Now
use the Simulink model to simulate the M/M/n̂ with the estimated values of λ and
µ. Run the simulation for the M/M/n̂ model for both cases: multi-line and serpen-
tine) in order to compute the average waiting time in the system. Discard the statis-
tics corresponding to initial transients and then collect the steady-state values. The
steady state of the system can be identified by inspection. The documentation of the
Simulink model can be accessed through https://in.mathworks.com/help/simevents/ug/

comparing-queuing-strategies.html. FOllow the steps suggested above to perform the
simulation and answer the following questions.

1. Simulate the model using the estimated value of λ in question 2 and the given value of
µ.

2. Verify the simulated value of the average sojourn time of the patient in the system
with the theoretically calculated value in question 7.

3. What do you observe from the simulation for the multi-line queue and the serpentine
queue? Which queue type do you think is more preferable for both patients and health
administrators? Explain your answer.

https://in.mathworks.com/help/simevents/ug/comparing-queuing-strategies.html
https://in.mathworks.com/help/simevents/ug/comparing-queuing-strategies.html
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4.10 Exercise problems

1. (Traffic in a call center booth) Assume that on an average a call to a customer care num-
ber lasts for three minutes. If the customer support number is busy, callers are placed
on hold and pushed to a queue. The hold can last for a maximum of three minutes after
which the caller is automatically dropped from the queue and is advised to call again
later. What is the maximum call rate that can be supported by one customer care number?

2. (M/M/k queues) Consider a queuing system with Poisson arrival of jobs at rate λ and
exponential service rate µ at each of k ≥ 1 counters. Deduce an expression for the average
number of jobs in the system? How many servers are busy on an average? Further, derive
an expression for the probability that a randomly arriving job enters a queue (and does
not directly go to service).

3. (M/M/1 queue - chances of finding a fixed queue size) Consider an M/M/1 queue in
steady state, what are the chances that a new arrival will find n clients in the system?

4. (Parking lots) Consider a parking lot with N vehicle slots. Incoming traffic follow a Pois-
son process wit rate λ. When the lot is full, traffic is not allowed in the lot and is instead
diverted to a different lot. Each vehicle that parks in the lot stays there for a random time
that is distributed according to an exponential distribution with rate µ. Construct a model
for computing the probability of finding exactly n ≤ N spaces occupied.

Figure 4.21:
Distribution of cars
in a parking lot.

5. (M/M/1 queues - optimizing service rate to maximize profit) A single server queuing
system provides service at rate µ where the service time is exponentially distributed. The
cost of providing service is estimated as 10µ per hour. Additionally, a gross profit of 10
INR is made for every client served by the system. If the system has a capacity N = 10
(i.e. no more than 10 clients can be allowed in the system at any given point of time),
estimate the rate µ that maximizes the total profit.

6. (Lazy service) Consider an M/M/1 queue which operates like a classical one except
when the queue is empty. In this exceptional case, normal service is resumed only when
at least 10 customers are again present in the queue. Answer the following questions.
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(a) What is the probability that the system is empty?

(b) What is the probability distribution for the number of customers in the system?

(c) What is the mean number of customers in the system?

(d) What is the average time to service resumption from the instant the queue is empty?

7. (Impatient client) A bank has a single server. Clients arrive at the bank gate according to
a rate λ = 2 Poisson process. The client enters the bank only if the server is free else he
walks away in search of a new bank. Further, the service time of the server is distributed
according to a distribution G with mean µG = 3, then compute the following.

(a) What is the rate at which clients enter the bank?

(b) What fraction of arriving clients actually enter the bank?

8. (Impatient client with a fickle mind) Answer question 7 with the caveat that the arriving
client enters the bank either when the server is free or with a probability p = 1

2 when the
server is busy.

9. (Renewal process)
{

N(t)
}

t≥0 is a counting process marking the arrival of N(t) point-events
up to time t and let T1, T2, ... denote the inter-arrival times between successive arrivals and
are i.i.d. random variables. Then N(t) is called a renewal process. Thus, a renewal process
is a counting process such that at the instant of an event occurrence a renewal is said
to have happened. This is so because the inter-arrival times have the same distribution
irrespective of the epoch of the previous event. The renewal epochs are denoted by Ri

where R0 = 0 and Rn =
n
∑

i=1
Ti, n ≥ 1. Further, let µ = E(Xn), n ≥ 1. Prove that with

probability equal to one, we have the following result.

lim
t→∞

N(t)
t

=
1
µ

. (4.57)

10. (Changing diapers) Alex must take care of his 4 month old baby and part of that job en-
tails changing the baby’s diapers as soon as it is soiled. If a diaper lasts for a uniformly
distributed time between 1 hour and 2 hours before it is soiled, then at what rate does
Alex have to change his baby’s diapers in the long run? Further, if Alex does not have
a back-up supply of diapers handy and must have to fetch a new one from the storage
which takes him any where between 15 and 30 minutes (again uniformly distributed),
then what is the average rate at which Alex changes the baby’s diapers?

Figure 4.22: How of-
ten does Alex have to
change his baby’s dia-
pers?

□
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WEEK\DAYS Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total
WEEK-01 - - - - 415 1107 1065 2587

WEEK-02 1894 1759 1605 1640 1455 1009 1007 10369

WEEK-03 1755 1615 1534 1557 1402 1073 904 9840

WEEK-04 1462 1475 1352 1405 1324 1012 908 8938

WEEK-05 1763 1420 1504 1432 1099 875 883 8976

WEEK-06 344 873 1505 1388 1245 900 567 6822

WEEK-07 1345 1090 1061 931 934 671 585 6617

WEEK-08 860 1110 1006 591 855 681 792 5895

WEEK-09 1117 1073 1023 1027 943 625 734 6542

WEEK-10 1174 936 956 934 888 594 595 6077

WEEK-11 1107 1086 958 964 937 627 644 6323

WEEK-12 1063 986 941 857 902 660 710 6119

WEEK-13 1215 1027 1048 1147 999 632 574 6642

WEEK-14 1043 938 959 861 847 638 497 5783

WEEK-15 1039 933 868 813 803 564 462 5482

WEEK-16 853 775 722 640 595 411 357 4353

WEEK-17 641 518 513 489 438 308 270 3177

WEEK-18 498 391 418 392 322 190 220 2431

WEEK-19 316 297 243 268 225 121 106 1576

WEEK-20 207 216 196 147 145 94 99 1104

WEEK-21 151 138 129 134 115 81 63 811

WEEK-22 105 102 81 62 67 32 34 483

WEEK-23 35 59 70 62 66 44 35 371

WEEK-24 64 55 58 46 44 28 35 330

WEEK-25 54 37 46 52 59 29 33 310

WEEK-26 40 50 48 51 61 37 28 315

WEEK-27 49 53 75 63 60 41 32 373

WEEK-28 62 125 147 110 111 63 79 697

WEEK-29 176 152 185 171 183 109 141 1117

WEEK-30 276 233 309 326 319 188 214 1865

WEEK-31 423 406 384 444 427 263 294 2641

WEEK-32 518 489 522 517 520 373 321 3260

WEEK-33 626 536 546 578 499 348 422 3555

WEEK-34 628 595 555 543 505 338 276 3440

WEEK-35 642 613 570 525 464 296 343 3453

WEEK-36 583 531 487 478 429 255 334 3097

WEEK-37 274 434 466 630 504 335 504 3147

WEEK-38 633 609 550 451 559 357 464 3623

WEEK-39 545 397 509 513 452 309 333 3058

WEEK-40 518 355 369 455 408 280 458 2843

WEEK-41 512 507 487 406 451 250 308 2921

WEEK-42 363 464 409 426 322 194 260 2438

WEEK-43 364 314 294 341 261 162 198 1934

WEEK-44 363 238 288 311 230 158 199 1787

WEEK-45 314 302 300 349 290 198 205 1958

WEEK-46 401 358 363 347 372 241 258 2340

WEEK-47 428 430 432 428 353 279 293 2643

WEEK-48 517 482 460 189 364 302 318 2632

WEEK-49 661 577 700 629 579 382 463 3991

WEEK-50 849 895 982 912 983 619 870 6110

WEEK-51 2390 3421 4123 4514 4275 3243 3437 25403

WEEK-52 8933 9446 9452 9606 5572 2344 7215 52568

WEEK-53 15029 14203 14298 13483 8744 - - 65757

Grand Total 57222 56124 57106 55635 45421 24970 30446 326924

Table 4.1: Number of
infected persons who
presented themselves at
the COVID test kiosks
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