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Mathematics of Uncertainty

Module 1: Probability Basics and Definitions  (6)

Module 2: Probability Distributions (6)

Module 3: Discrete Time Markov Chains (6)

Module 4: Statistical Experiments (6)

Module 5: Statistics for Complex Problems (4)

Each module consists of Lectures and a Mini-Project



Study of Probability 
in 

Ancient India



Movie Recommendation for the Weekend

Watch 

“Breaking Vegas: The True Story of the MIT Blackjack Team”
(Documentary)

or

“21”
(Hollywood Movie)

Both Available on YouTube

Shows what you can do with Mathematics and Probabilities



Birthday Surprise

In a party, make a bet that there will be at least two people in the
room with the same birthday!

If the number of people in the party is more than 23, you are likely
to win the bet!



Textbook: “Practical Introduction to Probability and Statistics – A project based 
conceptual guide to students and practioners”, by Amrik Sen

Draft Edition, under peer review by Cambridge University Press, will be provided to 
students on course website

Reference Books:
1. “Weighing the Odds - A course in Probability and Statistics”, by David Williams.
2. “Probability Theory – The Logic of Science”, by E.T. Jaynes.
3. “Introduction to Probability and Statistics for Engineers and Scientists”, by 

Sheldon M. Ross.
4. “Probability, Random Variables and Stochastic Processes”, Papoulis and Pillai



Assessments:

• Two written exams:  30% Mid Term (proctored) + 20% End Term (proctored) 
TOTAL Weightage = 50%

• Five Mini-Projects in the laboratory of 10% each    TOTAL Weightage 50%

Note that students will have to obtain a “pass” grade separately for the written 
exam (theory) and the laboratory exams (projects) in order to pass the course. 

For details, consult the “Course Brochure” provided in the course website.

The laboratory experiments and projects will use MATLAB (all modules) and 
also Python (for module 5.2)



Misadventures of Squeaky

Our friend Squeaky is trapped somewhere in the middle of a lonely island hill with
sharp cliffs on both sides. Squeaky is excited and jumps around in her merry way. At
any given instance, she decides to hop to the left or to the right independent of her
past moves. Squeaky is unaware of the impending danger of falling off the cliff.

In this project, we will use calculations based on the principles of conditional
probability, the law of total probability, and the law of total expectation to predict
her fate. In other words, what are the odds that she will bounce around on the island
hill, her left-sided moves balancing out her right-sided moves on an average, and
never actually trip and fall off on either side? Or will chance play the devil’s role and
will she eventually drift off to one side and perish? And if the latter turns out to be
true, then what is her life expectancy in terms of the total number of hops starting
from her first move? Does a certain initial position on the hill give her the best
chance to survive the longest?

In addition to our theoretical calculations, we will also build a computer simulation
of her actions to corroborate our result. For convenience, we shall assume that the
island is one dimensional, i.e., Squeaky’s movements are restricted exclusively to
lateral directions(left or right). While we build the computer-simulated solution, we
will learn to apply a random number generator using a computer software in order
to mimic Squeaky’s mental choices to hop either to the left or to the right
independent of her past moves.



Deterministic Outcomes

Permutations when the order matters

Combinations when the order does not matter



Permutations: 
* Number of permutations of n different things n! = n x (n-1) x….x 2 x 1
* Consider a situation where there are a total of n objects of r different types and 
where the number of objects of type k is nk with k = 1, 2, ……, r 

and n = n1 + n2 + …….. + nr
If we assume that the objects of the same type are indistinguishable from each other 
then the number of different ways in which the objects can be arranged is 

* If we have n different things then the number of permutations we get by taking 
only r (r of them at a time are ௥

௡ ௡!

௡ି௥ !
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For example, if we have nine slots and four differently colored balls, then the
number of different arrangements possible are ଽ!

ହ!



Combinations: 

Consider when the order of arrangement is not important. 

For example when we want to choose r items out of n in any
order, then the number of ways in which this can be done is given
by !

!( )!
n
r

n n
C

r r n r

 
    

For example, if we have nine slots and four identically colored balls, then the

number of different arrangements possible are 9
4

=126

Useful Result:   ௥
௡

௥
௡



Permutations and Combinations, as discussed in the previous slides, belong to a 
class of experiments that have deterministic outcomes, i.e. there are a finite and 
fixed of ways of arranging or combining items.

There may be experiments where the outcomes are not certain. For example, if we 
consider the experiment of putting five differently colored balls in five slots, we may 
ask what is the probability that the first slot is filled with a ball of a specific color.

This is where the study of probability and statistics comes in.

Probability:    Giving a measure of likelihood that an event will occur

Statistics:      Dealing with the collection (sampling), organization, analysis and 
interpretation of data to make inferences and forecasts. (It relies on 
the principles of probability.)



Some Definitions

Probability: The Probability of an Event is the measure of the likelihood that
the event will occur, e.g. the probability that it will rain today is 0.75

Statistics: This is the branch of mathematics that deals with the collection
(sampling), organization, analysis and interpretation of data including making
inferences and forecasts.

Probability deals with predicting the likelihood of future events, while 
statistics involves the analysis of the frequency of past events



Probability Space (Definition): 

A probability space is a triple is a sample space, is a 
(sigma algebra) of events and P is a probability measure on 

• The sample space is the set of all possible outcomes of a probabilistic 
experiment

• The is the collection of all subsets of to which we are 
able/willing to assign probabilities; these subsets are called events

• The probability measure P is a function that associates a probability to each of 
the events belonging to the 

Example: Probabilistic experiment to get a ball from an urn containing two balls, one red (R) and one blue (B)
⟹   Sample Space  Ω = 𝑅, 𝐵 and a possible 𝜎 − algebra ℱ of events is ℱ = ∅, Ω, 𝑅 , 𝐵  where 

∅ is the empty set (nothing happens)
Ω: either R or B is extracted
{R}: Red ball is extracted
{B}: Blue ball is extracted

𝑃 𝐹 = 0   if 𝐹 = ∅
= 0.5 if F={R}
= 0.5 if F={B}
= 1    if F= Ω



Axioms of Probability
Axioms are regarded as a priori propositions whose veracity is 
accepted universally without requiring validation by 
demonstration, i.e. they are accepted without proof. 

Axioms are useful as they allow deduction of realizable experiences

1.  for all (non-negativity of probability)

2. = 1  (unitarity)

3. ௜
ஶ
௜ୀଵ = ௜

ஶ
௜ୀଵ for a countable sequence of disjoint events E1, E2 …… 

( -additivity)



Supplementary Properties of the probability measure P that are helpful while 
performing calculations

1. For 𝐸1, 𝐸2 ∈ ℱ, we have 𝑃 𝐸1⋃𝐸2 =𝑃 𝐸1 + 𝑃 𝐸2 − 𝑃(𝐸1⋂𝐸2)

This can be generalized to n events E1, E2 …….En by induction. Principle of Inclusion-Exclusion

2. If 𝐸1, 𝐸2 are independent events (i.e. 𝐸1 ⊥ 𝐸2), then 𝑃 𝐸1⋂𝐸2 =𝑃 𝐸1 𝑃(𝐸2)

3. If Ac is the event complementary to the event A, then 𝑃 Ac = 1 − 𝑃 𝐴

4. The probability of the impossible event is zero, i.e., 𝑃 ∅ = 0

5. It is important to distinguish between mutually exclusive (disjoint) events and independent events

Mutually Exclusive        if 𝐸1⋂𝐸2 = ∅ ⇒ 𝑃(𝐸1⋂𝐸2)= 0

Independent Events     𝑃 𝐸1⋂𝐸2 =𝑃 𝐸1 𝑃 𝐸2   
and    

                                          𝑃 𝐸1 𝐸2 = 𝑃(𝐸1)

Mutually Exclusive events cannot happen 
concurrently.
Independent Events may happen 
concurrently but the outcome of one does 
not affect the outcome of the other



Venn Diagram:
A diagram representing mathematical 
or logical sets pictorially as circles or 
closed curves within an enclosing 
rectangle (the universal set). 
Common elements of the sets being 
represented by intersections of the 
circles.



Example: Rolling two dice concurrently

The experiment comprises throwing two independent dice. The sample set is the Cartesian product 
comprising the following ordered pairs –

Ω = {1, 2, 3, 4, 5, 6} x {1, 2, 3, 4, 5, 6} 
= {1, 1}, {1, 2}, {1, 3}, …, {1, 6}, {2, 1}, {2, 2}, ……, {2, 6}, {6, 1}, {6, 2}, …….., {6, 5}, {6, 6}

We may be interested in knowing the odds that the sum of the outcomes from each die is 
greater than or equal to 10. 

In this case, the event set is 𝔈 = { (4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6,6) }

with Probability 𝔈

ஐ
= ଺

ଷ଺



Random Variable

Consider a probability space Ω, 𝔉, 𝑃 . A random variable is a measurable function, 𝑋: Ω → ℝ, that 
maps each outcome to a real number, i.e. 

𝜔 ∈ Ω; 𝑋(𝜔) ≤ 𝑥 ∈ 𝔉, 𝑥 ∈ ℝ

A random variable may be discrete or continuous depending on whether it takes on discrete values
or continuous values

Ω Sample space of all possible outcomes
𝔉 Event space from Ω
𝑃 Probability measure

Example: 

(a)For a throw of the dice, we assign to the six outcomes fi i =1,…,6 the numbers 𝑿  𝑓௜ = 10𝑖
to get the random variables    

X  𝑓ଵ = 10 … … 𝑋  𝑓6 = 60

(b) In the same experiment, we assign the number 1 to every even outcome and 0 to every odd 
outcome. This gives the random variables

𝑋 𝑓1 = 𝑋 𝑓3 = 𝑋 𝑓5 = 0           𝑋 𝑓2 = 𝑋 𝑓4 = 𝑋 𝑓6 = 1 



Example:  A Coin Tossing Experiment

(a) Consider a simple experiment of tossing a fair coin 1

We associate the random variables   with each outcome.

(b) If we toss the coin twice, the outcomes in terms of events are 
2

We can associate a random variable with each outcome by counting the number
of HEADs in each case, i.e.



Indicator Random Variable

In some calculations, it is convenient to define an Indicator Random Variable as a 
random variable which takes binary values 1/0 for TRUE/FALSE. 

𝐴 ఠ∈஺

Example: Consider a fair coin being tossed twice, where the outcome of interest is one where 
there is at least one HEAD.  In this case, we can define A = {HH, HT, TH} and use the Indicator 
Random Variable to represent when at least one H appears.

Then, the Indicator Random Variable 𝕀 = ቊ
1  𝑖𝑓 𝐻𝐻, 𝐻𝑇, 𝑇𝐻

0   𝑖𝑓  𝑇𝑇

We will use the Indicator Variable in a example that we will subsequently consider



Examples of Continuous Random Variables

1. Inter-arrival time of buses at a bus station

2. Received signal strength (signal power) from a wireless station

3. The Air Pressure in a car tyre

4. Temperature, Pressure, Humidity etc.



Conditional Probability

Consider two random events A and B.

Conditional Event:    We  define  A|B as the conditional event that “A occurs 
given that event B has occurred”

Independent Events: Events A and B are independent ( ) if the occurrence 
of event B does not affect the occurrence of event A, or vice versa. In that case, 

, , 

𝐴⋂𝐵 Events A and B both occur
Notation: 𝐴⋂𝐵 also written as AB  (A AND B)



Law of Total Probability

The sample space may be partitioned into k
disjoint sets (i.e. events) where i=1, 2, …., k. 

The probability of a certain event  can then 
be computed by the weighted sum of the 
conditional probabilities ௜ where the weights 
are given by the probability of the partitioning 
events ௜ . 

This is the Law of Total Probability
 

1

( ) | ( )
k

i i
i

P A P A E P E






Bayes’ Theorem: 
( | ) ( )

( | )
( )

P B A P A
P A B

P B


Baye’s Theorem allow calculation of the posterior probability P(A|B) by using
the conditional probability P(B|A) and the probabilities of the individual events
P(A) and P(B) – these are known as the prior probabilities.

( ) ( ) ( | ) ( ) ( )
( | )

( ) ( ) ( ) ( )

P A B P B A P B A P A P AB
P A B

P B P B P B P B
   

  Notationally, 
A B B A AB  

Channel
Send  A Receive  B

Channel Characterization 
Study what the channel does by sending different signals (A) and 
observing what are received (B), i.e., get  P(B|A). 

Receiver Operation
When actually using the channel, observe what is received (B) and infer 
from that what is the most likely thing (A) that was sent. This is 
essentially an application of Bayes’ Rule by also knowing P(A) and P(B)



Example:  Bayes’ Theorem and the Law of Total Probability
A factory unit uses three automatic bolt threading machines (rollers), each accounting for 20%, 30%, and 50% of
the factory output of ready-to-use bolts for the aerospace industry. The precision rating (number of non-
defective parts produced per one hundred) of each of the rollers is 95%, 97%, and 99% respectively.

If a part is picked up at random from the production line and found to be defective, what is the probability that
it was produced by the second machine?

Solution: 
Ai : Event that a randomly picked bolt is made 

by the ith machine, i=1, 2, 3
B : Event that a randomly chosen part is defective

From the given data, we get that –

𝑃 𝐴1 = 0.2, 𝑃 𝐴2 = 0.3, 𝑃 𝐴3 = 0.5
and 𝑃 𝐵 𝐴1 = 0.05, 𝑃 𝐵 𝐴2 = 0.03, 𝑃 𝐵 𝐴3 = 0.01

We need to find 𝑃(𝐴2|𝐵) i.e., given that we have a defective 
part (Event B), the probability that it came from machine A2

Using Bayes’ Theorem –

𝑃 𝐴2 𝐵 =
𝑃 𝐵 𝐴2 𝑃(𝐴2)

𝑃(𝐵)

                 =
(0.03)(0.3)

∑ 𝑃 𝐵 𝐴௜ 𝑃(𝐴௜)ଷ
௜ୀଵ

=
଴.଴଴ଽ

଴.଴ହ ଴.ଶ ା ଴.଴ଷ (଴.ଷ)ା(଴.଴ଵ)(଴.ହ)

= 0.375



Continuing with the previous example ………………..

On observing a defective bolt, a naïve conclusion based only on prior
belief may be that there is a 30% chance that this part came from Machine
2 because that machine makes 30% of the parts.

However, application of Bayes’ Rule gives a much more accurate posterior
probability estimate (37.5%) that the defective part came from Machine 2.

Bayesian inference, therefore, enables a much better predictive
knowledge of a phenomenon by synthesizing information and data from
actual observation and experience.

It would be an interesting experience to look back on this calculation and 
argue logically on why this happened.



Misadventures of Squeaky ……….   continued…………

1. Squeaky has no “bias”, so 
jumps to the left or to the right 
are equally likely.
2. However, each jump is of only 
one step.

Squeaky’s Demise

Once Squeaky falls off the cliff, he 
stays there for ever!!

m=0  falls in the left pit
or    m=n  falls in the right pit

Spanning Tree 
showing possible 
decision paths 
starting from 
location m



Misadventures of Squeaky ……….   continued…………

W : Event that Squeaky falls into the left pit

Pm= Pm(left pit)= P(Squeaky falls into the left pit starting at X0=m) = P(W|X0=m) P0=1, Pn=0 obviously

E : Hop to the Left,       EC : Hop to the Right

Using the law of total probability and conditioning on whether the jump is to the left or right, we get –

Pm= P(W,E|X0=m)    +     P(W,EC|X0=m) 
= P(W|E, X0=m)P(E|X0=m) + P(W|EC, X0=m) P(EC|X0=m) 
= P(W|X1=m-1)(0.5)  + P(W|X1=m+1)(0.5)
= 0.5Pm-1 + 0.5Pm+1

Note that –
E,  X0=m  →  X1=m-1

and         EC, X0=m  →  X1=m+1

Rewriting  Pm=0.5Pm-1 + 0.5Pm+1 , we get        Pm+1 – Pm = Pm – Pm-1 for m=1,…, n-1  with P0=1, Pn=0
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
   

     

    

Writing these equations explicitly from m=1, 2, ….., n-1 we get –

Summing the LHS and RHS of these 𝑛 − 1 equations, we get

Note that if Pm is the probability of falling in the Left Pit, starting from position m, then the
probability of falling in the Right Pit starting from that position, is 1-Pm.

We can also get the same result by repeating the above derivation for the event that Squeaky
falls into the Right Pit (Try it!)

This is because Squeaky is destined to eventually fall either in the left pit or in the right pit 
starting from any position m. 

Interesting Question – Can Squeaky nevertheless “live to infinity” like Ashwathama? 
What do you think?

Solving Directly!  …… works for this problem but may become difficult for a general problem



Solving as a Homogenous Linear Recurrence
where  𝑎1, 𝑎2 … . 𝑎ௗ, 𝑑 are constants

1 2( ) ( 1) ( 2) ...... ( )df m a f m a f m a f m d      

Substituting the guess, 𝑓 𝑚 = 𝑥௠, gives    𝑥௠ = 𝑎ଵ𝑥௠ିଵ + 𝑎ଶ𝑥௠ିଶ + ⋯ + 𝑎ௗ𝑥௠ିௗ

and dividing this by 𝑥௠ିௗ gives the 

Characteristic Equation for this 𝑥ௗ = 𝑎ଵ𝑥ௗିଵ + 𝑎ଶ𝑥ௗିଶ + ⋯ + 𝑎ௗିଵ𝑥 + 𝑎ௗ

The solutions to the homogenous linear recurrence are defined by the roots of the 
characteristic equation. Neglecting boundary conditions, we have the following –
• If 𝑟 is a non-repeated root of the characteristic equation, then 𝑟௠ is a solution to the 

recurrence
• If 𝑟 is a repeated root with multiplicity 𝑘 then 𝑟௠, 𝑚𝑟௠, 𝑚ଶ𝑟௠, … . . , 𝑚௞ିଵ𝑟௠ are all 

solutions to the recurrence
• Every linear combination of these solutions is also a solution



To use this approach, we write  Pm= 0.5Pm-1 + 0.5Pm+1 as  𝑃௠ାଶ − 2𝑃௠ାଵ + 𝑃௠ = 0

The Characteristic Equation for this (on trying a solution of the form 𝑥௠) is   𝑥ଶ − 2𝑥 + 1 = 0

This has a double root at 𝑥 = 1 ⇒ the homogenous solution has the form  

𝑃௠ = 𝑎 1௠ + 𝑏𝑚 1௠ = 𝑎 + 𝑏𝑚

The Boundary Conditions for this are 𝑃଴ = 1 and 𝑃௡ = 0 gives 𝑎 = 1, 𝑏 = −
ଵ

௡

Therefore, P(Squeaky falling into the left pit starting from 𝑚) = 1 −
௠

௡
𝑚 = 0,1, … . , 𝑛 − 1, 𝑛

and             P(Squeaky falling into the right pit starting from 𝑚) = 
௠

௡

Note that, as you would logically expect, Squeaky has a higher probability of falling in the 
left pit if she starts from a position closer to the left pit (and vice versa)



What happens if 𝑝 ≠ 𝑞 (but, of course, 𝑝 + 𝑞 = 1) ?

In that case, we get –

1 1

0,1,........,
1

1

n m

m n

p p
p p

P m n
p

p

    
   

    
 

 
 

So, poor Squeaky is still sure to die

Try obtaining this, both by the Direct Calculation Method 
and by Solving the Homogenous Recurrence



We now know that Squeaky will eventually 
Stop Squeaking

but for how long will he still be with us?

To calculate Squeaky’s Lifetime, we need to learn few other things first –

1. How to calculate expectations of random variables?

2. How to solve a Non-homogenous Recurrence equation?



Weekend Diversion!

Remember Signor Fibonacci (1170-1240)! He learnt the secrets of ZERO from the Ancient
Indians (actually via the Arab mathematicians) and taught the West the joys of having
nothing!!

He is also famous for giving the world the Fibonacci Sequence

𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓 𝑛 − 2 … .for 𝑛 ≥ 2 and 𝑓 0 = 1, 𝑓 1 = 1

It took SIX centuries for mathematicians to figure out a solution to this of the form

𝑓 𝑛 = 𝑎𝑏௡ + 𝑐𝑑௡

You can of course do this in a few hours on a weekend afternoon (less, if you know how to Google) but 
once you see the solution, you can appreciate why it took so much time for the world to get there!



The Fibonacci Sequence  𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓 𝑛 − 2 … .for 𝑛 ≥ 2 and 𝑓 0 = 1, 𝑓 1 = 1

has the solution -

1 1

1 1 5 1 1 5
( )

2 25 5

n n

f n

 
    

       
   



Expected Values of Random Variable  X

(First Statistical Moment) ௑ or Mean

The expected value of a random variable may be computed as –

௑ ௫ ∈ ௥௔௡௚௘(௑) may be simply written as 

(Second Statistical Moment)      ௑
ଶ or ଶ Variance Var(X)

The variance of a random variable may be computed as –

௑
ଶ 2 2

௫ ∈ ௥௔௡௚௘(௑)

We also have the useful relationship     2
௑
ଶ



Some other useful results
where c is a constant

where c is a constant

2 where c is a constant

where c is a constant

2 2 where
a, b are constants 

and ௑ ௒ covariance of X and Y



Example:  Expectation of an Indicator random variable

As defined earlier, an Indicator Random Variable as a random variable which takes 
binary values 1/0 for TRUE/FALSE. 

𝐴 ఠ∈஺

Therefore, it follows that –

஺
஼



Example: Expected number of new recruits per n hiring interviews

Problem Statement: Let us consider that a hiring manager has the responsibility of
conducting interviews of n candidates for the post of a service executive over a certain
period of time.

The candidates appear for the interviews in a random fashion, i.e. from the perspective of
the hiring manager, prior to the interview, there is an equal probability among candidates
to be the most suitable candidate.

The hires are made on a rolling basis in the sense that whenever he encounters a better
candidate than the existing one, he hires that person and keeps him in the job until a better
candidate is found.

How many hires are made in this process?

Can we give an estimate of the cost associated with this firing-recruiting process?



Example: Expected number of new recruits per n hiring interviews …… continued …

Define an indicator variable as  𝕀𝑖 = ቊ1           when the 𝑖௧௛ candidate is hired
0   when the 𝑖௧௛candidate is not hired

The 𝑖𝑡ℎ candidate is hired if he/she is better than the preceding (𝑖 − 1) candidates. The probability
of this is pi = ଵ

௜
since each of these 𝑖 candidates have an equal chance to be hired.

The total number of hires is then 𝑋 = ∑ 𝕀௜
௡
௜ୀଵ

with 𝐸 𝑋 = 𝐸 ∑ 𝕀௜
௡
௜ୀଵ = ∑ 𝐸 𝕀௜ =௡

௜ୀଵ  ∑ 𝑝௜
௡
௜ୀଵ = ∑

ଵ

௜
 =  log 𝑛 + 𝒪(1)௡

௜ୀଵ

This means that for every 𝑛 interviews conducted by the hiring manager, approximately log(𝑛) of
them get hired on an average. The cost of the recruitment process is 𝒪(𝑐ு log 𝑛 ) where 𝑐ு is the
hiring cost for every new hire.

𝛾 = lim
௡→ஶ

− log 𝑛 + ෍
1

𝑖

௡

௜ୀଵ

= 0.5772 Euler’s Constant or Euler-Mascheroni Constant 


