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Probability Distributions

Figure 2.1: A cartoon
capturing the essence
of the Heisenberg’s
uncertainty principle:
∆x∆p ≥ ℏ

2 ; where ∆x
is the uncertainty in
position, ∆p is the un-
certainty in momentum
(or velocity), and ℏ is
the Planck’s constant.

Distributions are generalizations of mathematical functions from a purely technical
standpoint. But perhaps it is most pertinent to begin by asking a more utilitarian question.
Why should we study distributions? Specifically, why should we study probability distribu-
tions? One of the motivations stems from a practical limitation of experimental measure-
ments that is underlined by the uncertainty principle postulated by Werner Heisenberg (cf.
Figure 2.1). The very fabric of reality and the structure of scientific laws that govern our abil-
ity to understand physical phenomena demand a probabilistic (statistical) approach. Our
inability to make infinite-precision measurements of data necessitates the consideration of
averages over many measurements, and under similar conditions, as a more reliable strategy
to affix experimental values to unknowns with reasonable accuracy. Typically, the operation
of averaging is equivalent to performing an integral of the form u :=

∫
D u(x)dx over the do-

main D. The function u(x) is a mathematical representation of a quantity of interest whose
average we are interested in calculating over D. This simple expression for the average is
computed by integrating uniformly over D. More generally, the average may be computed
by using an appropriate weight function f (x) and integrating as

∫
D u(x) f (x)dx. Here f (x)

serves as the distribution function over D that appropriately weighs u(x) during the averag-
ing process.

Figure 2.2: Signature
of a two dimensional
Brownian motion. Like
in the one dimensional
case, the expected value
of the two dimensional
random velocity vector
⟨U⟩ ≡ 0.

As an example, consider a large collection of particles moving in one dimensional space
(the particles are free to move either to the left or to the right with any speed). The velocity
of the ith particle is given by u(i). Let us suppose that we want to find the average velocity
of the flow. One option is to find an ensemble average of the velocities of many such par-
ticles. This is equivalent to computing u :=

∫
D u(x)dx if the velocity profile of the overall

flow, u(x), is known to us over the domain D. Alternatively, if the velocity distribution func-
tion of the particles f (u) is known, then we can compute u ≡ ⟨U⟩ =

∫
U u f (u)du where U

is the appropriate domain in the velocity space and f (u) prescribes the probability distri-
bution of U.1 Two interesting cases are noteworthy here: (i) if the aforementioned particles 1 ⟨U⟩ ≡ E(U) is the expected

value of the random velocity
variable U and is analogous
to the ensemble average.

follow a Brownian motion (cf. Figure 2.2), then f (u) is the Maxwell-Boltzmann (symmetric
and bell-shaped) distribution and u = 0 as expected, and (ii) if the flow is unidirectional
and every particle moves with constant speed u0, then clearly u = u0. The latter result
may be expressed as a weighted integral by using the Dirac delta distribution as follows:
u =

∫
U uδ(u− u0)du = u0. In order to facilitate a deeper appreciation of the practical utility

of distribution functions, let us delve a little more on this example of a collection of particles
moving with velocity u0. A gas in thermal equilibrium comprises a collection of such parti-
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cles. Let us say we want to deduce the notion of temperature of the gas. This may be done
by associating the concept of temperature to the average kinetic energy of the particles. If all
the particles have an identical velocity u0, then the average kinetic energy is simply 1

2 mu2
0.

However, even in a steady and uniform flow, it is unlikely that every particle constituting the
flow will move identically with velocity u0. Even though the majority of the particles may
have the velocity u0, there are likely going to be exceptional particles with slightly higher
or lower velocities. So instead of applying the Dirac delta distribution, a more appropriate
weight function may be f (u) with a distribution profile akin to the one shown in Figure 2.3.
So in order to estimate the average kinetic energy of the particles, the distribution f (u) must
be employed to probe the kinetic energy law ψ(u) = 1

2 mu2 across the spectrum of parti-
cle velocities. Thence, the average kinetic energy is

∫ ∞
−∞ ψ(u) f (u)du which now has a clear

mathematical interpretation in the sense of the distribution f (u).
Figure 2.3: Distribution
of velocity of parti-
cles in a uniform flow
shows that a majority
of the particles move
with a velocity u0 al-
though there may be
some small deviations.

Thus, statistical averages (and moments)2 rely on the probability distribution functions

2 In this chapter, we will
encounter terms such as
E(Xr), r ∈ I+, that are
known as the moments of the
random variable X.

of the relevant variables and are commonly used in developing many statistical models of
practical importance such as the kinetic theory of gases. We must now begin a formal study
of such distributions that lie at the heart of all statistical analysis.

2.1 Chapter objectives

The chapter objectives are listed as follows.

1. Students will learn the notion of probability mass function, probability density function,
and cumulative distribution function.

2. Students will learn to compute expected values and higher order statistical moments
using probability distribution functions.

3. Students will learn the concept of moment generating functions and use it to deduce the
distribution of a random variable.

4. Students will learn the concept of joint probability distributions of multiple random vari-
ables. They will learn to deduce the marginal probability distribution from the joint prob-
ability distribution.

5. Students will study different types of discrete and continuous random variables. They
will learn how to appropriately characterize a given phenomenon using one or many of
these named probability models.

6. Students will learn to design and analyse an application project from the actuarial sci-
ences (e.g., insurance model) by using a certain compound probability distribution model.

2.2 Chapter project: Predicting insurance claim aggregates during a policy period

2.2.1 Epilogue: Modeling insurance claims using a compound probability distribution

Figure 2.4: Claims are
made to an insurance
manager at the end of a
policy period.

A certain insurance company is interested in predicting the total aggregate of all claims
made during a fixed policy period from a portfolio of insurance products. Such an exer-
cise will enable the company to make an assessment of its financial risks while charting
out product launch schedules for the upcoming financial year.
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A consultant to the company designs the following mathematical model to accomplish
this task. Consider that the firm expects a certain number (Nj) of claims, from amongst
its clients, during a fixed period j. Since there is no reason for this number Nj to be de-
terministically computable,3 it is reasonable to assume Nj to be a random variable. Now 3 A multitude of external

factors may determine the
value of Nj. The complex
inter-relationship between
these factors may further
enhance the uncertainty in
knowing what the exact value
of Nj might be.

there are Nj of these claims, each claim amount is independent of the other and is also in-
dependent of Nj. This is also reasonable because each claim is made by a different client
acting independent of the other. Further, each claim amount is also a random number
which possibly corresponds to a common probability distribution. Let the claim amount
by the ith client be denoted by Xi. Xi corresponds to a probability distribution function
FX(x). The aggregate claim for the policy period j under consideration is also a random

quantity Yj = X1 + X2 + · · ·XNj = ∑
Nj
i=1 Xi that obeys a compound probability distribution.

Based on this model, a quantity of interest to the insurance firm is E(Yj) that you as the
consultant will have to estimate in this project.

Moreover, consider there are four policy periods in a given financial year. The total
premium collected at the beginning of the year by the insurance firm is $ m. Let λj be the
rate at which claims are received per policy period j. Now consider Z = ∑4

k=1 Yk is the
aggregate claim at the end of the 4th policy period (year end). The company incurs a loss
if Z > $ m. In this project, you will simulate a certain compound stochastic process in
Matlab and compute the associated risk for the insurance firm in terms of a probability
P(Z > $ m). Concurrently, you will learn about a composite stochastic model known as
the compound Poisson process that is used by insurance companies to assess their risks.

Before we urge the readers to work on this aforementioned project, let us first learn
some of the essential and fundamental elements of probability distributions.

Figure 2.5: Profile of the
function u(x) along x.
The shaded area under
the curve u(x) is given
by
∫

u(x)dx.

Figure 2.6: Profile of the
weight function f (x)
demonstrates the rela-
tive importance of the
observables x in D.

2.3 Geometrical interpretation of integration with respect to a distribution function

We may recall from our elementary calculus course that the Riemann integral
∫
D u(x)dx with

respect to the independent variable x may be interpreted as area under the curve u(x) (cf.
Figure 2.5). This Riemann integral can be approximated by the Riemann sum ∑xi∈D u(x∗i )∆xi,
where x∗i ∈ [xi−1, xi], ∀i = 1, 2, · · ·, n and the xis are generally equally spaced n nodes (grid
points) in the domain of integration D along the x axis. Simply put, this sum is an aggregate
of areas of thin rectangular strips of height u(x∗i ) and width ∆xi. The Riemann sum is equal
to the integral

∫
D u(x)dx in the limit ∆xi → 0 (for all i) if and when this limit exists. This

computation relies on the fact that all observable x values4 are equally important and equally

4 We are now using a termi-
nology for x that will serve
as a bridge from calculus to
probability vocabulary.

likely to be encountered in a practical situation. Hence the function u(x∗i ) is multiplied by
the same unit scalar for all values of x∗i in the summand. However, this need not always be
the case as has been explained in the example discussed in the introductory paragraphs of
this chapter. Consider that the importance factors of the different x∗i values are illustrated
by the profile f (x) defined over all the x∗i s in D (cf. Figure 2.6). This relative importance of
certain x∗i s over the others necessitates scaling the u(x∗i )s appropriately by the weight factors
f (x∗i )s. The accurate representation of this case entails that we now have a modified integral
of the form

∫
D u(x) f (x)dx which may be approximated by the sum ∑xi∈D f (x∗i )u(x∗i )∆xi.

It is important to note that the profile of the importance factors of the observables as
prescribed by the distribution function f (x) will be different for different practical appli-
cations. In fact, much of this chapter and the subsequent models that we will discuss in
this book will highlight this fact emphatically. Further, since the averaging procedure of
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the function u(x) is being performed under the guidance of the distribution function f (x),
it is more appropriate to underscore this fact by using a modified notation for the integral,
viz.,

∫
D u(x)dF(x). In the context of probability theory, there is a unique relation between

the cumulative distribution function F(x) and the probability density function f (x) that we

will address in one of the subsequent sections of this chapter
(

f (x) = dF(x)
dx
)
. Thus far in

our discussion here we have been referring to the probability density function f (x) as the
distribution function in the general sense of computing averages of functions. Going for-
ward in subsequent sections of this chapter, and in the following chapters, we will make this
distinction explicit in most scenarios.

Figure 2.7: Distribution
profile of the observ-
ables x is prescribed by
some function F(x).

Figure 2.8: Geometrical
meaning of an inte-
gral with respect to a
distribution function.
This figure is borrowed
from the work of Gre-
gory Bullock referenced
below.

Before we dive further into the conceptual elements of probability distributions, it may
be useful to shed light on the geometrical meaning of the integral

∫
D u(x)dF(x) which is

widely known as the Riemann–Stieltjes integral. For this purpose, we will consider a distri-
bution profile of the observables prescribed by some function F(x) as shown in Figure 2.7.
Since the function being averaged (u(x)) has an independent existence compared to the dis-
tribution profile of the observables (F(x)), each of x, u, and f can be represented along an
independent axis in a three dimensional representational space. Further, since F(x) and u(x)
have independent origin and existence, the profile of a sheet traced by u(x) along x, and
protruding out of the u − x plane, will resemble hills and valleys along the x axis but look
flat (straight) along the F direction. Thus the height of this undulating sheet is prescribed by
u(x). If we were to consider another surface that cuts through this sheet, that emanates out
of the u− x plane, under the guidance of the curve traced by F(x), then a fence-type surface
will emerge whose height is given by u(x). This is shown in Figure 2.8. Clearly the area of
the projection of this fence on the u − x plane gives the familiar area under the curve u(x)
that can be computed by the integral

∫
D u(x)dx. The projection of this fence on the u − F

plane, on the other hand, is denoted by the shaded shadow region whose area is given by
the Riemann–Stieltjes integral

∫
D u(x)dF(x). For the special case F(x) = x in D, the Rie-

mann–Stieltjes integral (integration with respect to the distribution F(x)) becomes identical
to the more familiar Riemann integral

∫
D u(x)dx. This aforementioned explanation is based

on the discussion reported in the article published in the The American Mathematical Monthly
by Gregory L. Bullock5.

5 Gregory L. Bullock. “A
Geometric Interpretation
of the Riemann-Stieltjes
Integral”. In: The American
Mathematical Monthly 95.5
(1988), pp. 448–455

2.4 Discrete vs continuous probability distributions

In the previous chapter, under the section on random variables, we have encountered two
different types, namely, discrete and continuous random variables. In case of the former
type, the random variables take on distinct values. A simple example is the outcome of
tossing a fair coin - it is a head or a tail with a designated random value of 1 or 0, each with
a probability equal to 1

2 . In the continuous case, the outcomes are such that the random
variable may take on a continuum of values over a range prescribed by the sample space Ω.
A classic example is the test score obtained by a student who is registered in a course, this
score may be any real number between 0 and 100. It may be considered a random number
because without any specific information about this student’s performance in the test or
his/her talent/skill-level in the subject or the nature of the test itself, it may be hard to make
a definitive prediction of the student’s score. Under the circumstances, it may be prudent to
deduce the score by sampling without bias from the bell-shaped Gaussian distribution (cf.
Figure 1.8).
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In this section, we will formally define the probability distribution profile for discrete and
continuous random variables. Consequently, these definitions will be helpful to calculate
statistical moments (means, variances, etc.) of the respective random variable and thereby
make forecasts of important events. These calculations become very useful when we do
not have access to any sample data but instead have some understanding of the underlying
stochastic phenomenon which allows us to identify, with reasonable accuracy, the relevant
probability/stochastic model and utilise its probability distribution profile.

2.4.1 Definition: Probability mass function
Figure 2.9: Probability
mass function fX(xi)

of a certain discrete
random variable. It
may be verified that
∑xi∈Ω fX(xi) = 1.

For a discrete random variable, each possible observable xi ∈ Ω has a certain probability
of occurrence pi := P(X = xi) which we can think of as a probability mass. Obviously,
∑xi∈Ω P(X = xi) = 1 due to the second axiom of probability (axiom of unitarity) and this
serves as a conservation law. We will use the notation fX(xi) ≡ pi to denote the probability
mass function (p.m.f.) of a discrete random variable. The profile of fX(xi) presents a visual
depiction of how the probability masses are interspersed over the sample space Ω (cf. Figure
2.9).

2.4.2 Definition: Probability density function

Figure 2.10: Probability
density function fX(x)
of a certain continuous
random variable.

In the case of a continuous random variable X, the probability mass is spread continuously
over the range of the observables. Therefore, it is appropriate to use the notion of a density
function fX(x), instead of probability mass. The unitarity axiom of probability enforces the
following normalization of the probability density function (p.d.f.):

∫
x∈Ω fX(x)dx = 1. It

follows that P(a ≤ X ≤ b) =
∫ b

a fX(x)dx represents the area under the curve f between a
and b (cf. Figure 2.10).

Example 1: Distribution profile of a discrete random variable

A random variable X has the following probability mass function p(x):

Value of X 0 1 2 3 4 5 6 7
p(x) = P{X = x} 0 k 2k 2k 3k k2 2k2 7k2 + k

(i) Find the value of k where k ∈ R is a constant.
(ii) Evaluate P{X < 6} and P{0 < X < 5}.

Solution:
(i)

∑
i

p(xi) = 1

k + 2k + 2k + 3k + k2 + 2k2 + 7k2 + k = 1

10k2 + 9k− 1 = 0

k =
1

10
.
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(ii)
P(X < 6) = 1− P(X ≥ 6)

= 1− [P(X = 6) + P(X = 7)]

= 1− 19
100

=
81

100

P(0 < X < 5) = 1− [P{X = 5}+ P{X = 6}+ P{X = 7}]

= 1− 20
100

=
4
5

.

Example 2: Probability mass function of a discrete random variable

A random variable X has the following probability mass function:

p(i) =
cλi

i!
, i = 0, 1, 2, 3, . . . c, λ are constants

(i) Find the value of c.
(ii) Evaluate P{X = 0}.

Solution:
(i)

∑ pi = 1

c ∑
λi

i!
= 1

c · eλ = 1

c = e−λ

(ii)

p(0) =
e−λλ0

0!
= e−λ.

Example 3: Probability density function of a continuous random variable

The probability density function of a continuous random variable X is given by:

f (x) =


ax, 0 ≤ x < 1
a, 1 ≤ x < 2

−ax + 3a, 2 ≤ x ≤ 3
0, otherwise.

Find the value of a.

Solution:
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∫ ∞

−∞
f (x) = 1∫ 1

0
ax dx +

∫ 2

1
a dx +

∫ 3

2
(−ax + 3a) dx = 1

a
2
+ a− 5a

2
+ 3a = 1

2a = 1

a =
1
2

.

Figure 2.11: Contour of
an old metallic electric
kettle that has taken
many dents on its body
over the years.

Example 4: Sculpting an electric kettle

The diameter X of an electric kettle is assumed to be a continuous random variable
with probability density function:

f (x) =

{
6x(1− x), 0 ≤ x ≤ 1

0, otherwise.

a) Check that above function is indeed a probability density function.

b) Compute P
{

X ≤ 1
2

∣∣∣∣ 1
3 ≤ X ≤ 2

3

}
.

c) Determine k such that P{X < k} = P{X > k}.

Solution:
a)

LHS =
∫ ∞

−∞
f (x) dx =

∫ 1

0

(
6x− 6x2

)
dx =

(
6x2

2
− 6x3

3

)1

0
=
(

3x2 − 2x3
)1

0
= 1 = RHS.

b)

P
{

X ≤ 1
2

∣∣∣∣ 1
3
≤ X ≤ 2

3

}
=

P
[{

X ≤ 1
2

}
∩
{

1
3 ≤ X ≤ 2

3

}]
P
{

1
3 ≤ X ≤ 2

3

}

=
P
{

1
3 ≤ X ≤ 1

2

}
P
{

1
3 ≤ X ≤ 2

3}
=

(
3x2 − 2x3) 1

2
1
3

(3x2 − 2x3)
2
3
1
3

=

( 3
4 −

2
8
)
−
( 3

9 −
2

27
)(

12
9 −

16
27

)
−
( 3

9 −
2

27
) =

(
3
4 −

1
4

)
−
( 9

27 −
2

27
)(

36
27 −

16
27

)
−
( 9

27 −
2

27
)

=
1
2 −

7
27

20
27 −

7
27

=
27− 14
2× 13

=
13
26

.

P
{

X ≤ 1
2

∣∣∣∣ 1
3
≤ X ≤ 2

3

}
=

1
2

.

c) k is positive and k < 1, otherwise we will get a non-sensical relation 0 = 1.
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Therefore, 0 < k < 1, such that P{X < k} = P{X > k}.

P{X < k} = P{X > k}∫ k

0
6x(1− x) dx =

∫ 1

k
6x(1− x) dx

3k2 − 2k3 = 3
(

12 − k2
)
− 2(13 − k3)

3k2 − 2k3 = 3− 3k2 − 2 + 2k3

4k3 − 6k2 + 1 = 0

(2k− 1)(2k2 − 2k− 1) = 0

k =
1
2

,
1±
√

3
2

.

But since we considered 0 < k < 1, therefore k = 1
2 .

2.4.3 Definition: Cumulative distribution function

The cumulative distribution function (c.d.f.) FX : R → [0, 1] is defined as FX(x) ≡ F(x) :=
P(X ≤ x), x ∈ R. It follows that P(a ≤ X ≤ b) =

∫ b
a f (x)dx = F(b)− F(a). The c.d.f. FX has

the following properties:

(i) limy↓−∞ F(y) = 0,

(ii) limy↑∞ F(y) = 1,

(iii) limy↓x F(y) = F(x), ∀x ∈ R (i.e. FX is right-continuous).

The first two properties imply that F is always a non-decreasing function. It must be noted
that the definition of the c.d.f. as stated above is valid for both discrete and continuous ran-
dom variables. Let us consider the case of a continuous random variable. Clearly F(x) =∫ x
−∞ f (ζ)dζ for a continuous real-valued function f (p.d.f.) whence F is uniformly contin-

uous and differentiable, thereby dF(x)
dx = f (x) =⇒ dF(x) = f (x)dx which is a direct

consequence of the fundamental theorem of calculus.
There are two main interpretation of the distribution function FX(x) that is noteworthy to

mention here.

(I) FX(x) prescribes the distribution of probability mass on the real line. Concomitantly,
F(b) − F(a) is the mass concentrated in the interval (b − a). For the discrete case,
locations of concentrated point mass on the real line (xi) are points of discontinuity of
FX with jumps proportional to pi ≡ FX(xi + 0) − FX(xi − 0).6 There are a finite or a 6 A distribution with only

concentrated point masses
is a discrete distribution and
one without is a continuous
distribution.

countable number of such jumps and FX is continuous everywhere else.

(II) FX(x) encompasses the accumulation of probability masses (or density) up to x. There-
fore, it is additive, non-negative, and has a unit maximum value. Thus, the c.d.f. F
qualifies as a measure (F-measure). In section 2.3 above, we have commented on this
aspect of interpreting the linear functional F(u) defined by F(u) =

∫
D u(x)dF(x) as an

integral of a measurable function u(x) over D with respect to the F-measure F(x).7 7 The F-measure corresponds
to the Jordan-Peano measure
(Jordan content) that extends
the notion of size to more
complicated geometry.
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Example 1: Cumulative distribution function of a discrete random variable

A random variable X has the following probability mass function p(x):

Value of X 0 2 3 4 4 5 6 7
p(x) = P{X = x} 0 k 2k 2k 3k k2 2k2 7k2 + k

Find the (cumulative) distribution function of X.

Solution:

Value of X 0 1 2 3 4 5 6 7
p(X) = P{X = x} 0 1

10
2

10
2

10
3
10

1
102

2
102

7
102 +

1
10

F(x) = P{X ≤ x} 0 1
10

3
10

5
10

8
10

8
10 + 1

102 = 81
102

8
10 + 3

102 = 83
102

9
10 + 10

102 = 1

Example 2: Convergence of c.d.f. to unity

A random variable X has the following probability mass function:

p(i) =
cλi

i!
i = 0, 1, 2, 3, . . . c, λ are constants

Verify that the cumulative distribution function converges to 1 as x tends to ∞.

Solution:

lim
x→∞

F(x) = P{X ≤ ∞}

=
∞

∑
i=0

pi

=
∞

∑
i=0

e−λλi

i!

= e−λ
∞

∑
i=0

λi

i!

= e−λeλ

= 1.

Figure 2.12: The
staircase of chance
from nullity to unity:
FX(x)→ 1 as x → ∞.

Example 3: Computing probability of events from the c.d.f.

Let X be a random variable with cumulative distribution function F(x). Compute each
of the following probabilities in terms of F(x).

P{X ≤ a},
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P{X > a},
P{a < x ≤ b},
P{X < a}, P{X = a},
P{a ≤ X < b},
P{a ≤ X ≤ b},
P{a < X < b} and P{X ≥ a}.

Solution:

P{X ≤ a} = F(a).

P{X > a} = 1− F(a).

P{a < X ≤ b} = F(b)− F(a).

P{X < a} = F(a−) = lim
t→a−

F(t).

P{X = a} = F(a)− F(a−).

P{a ≤ X < b} = F(b−)− F(a−).

P{a ≤ X ≤ b} = F(b)− F(a−).

P{a < X < b} = F(b−)− F(a).

P{X ≥ a} = 1− F(a−).

Example 4: Cumulative distribution of a continuous random variable

Let the probability density function of a random variable X be given as follows.

f (x) =


x, 0 < x ≤ 1

2− x, 1 < x ≤ 2
0, otherwise.

Compute the cumulative distribution function of this random variable.

Solution:
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F(x) =
∫ x

−∞
f (t) dt =

∫ x

0
f (t) dt.

Therefore, F(x) =


0, x ≤ 0∫ x

0 x dx, 0 < x ≤ 1∫ 1
0 x dx +

∫ x
1 (2− x) dx, 1 < x ≤ 2∫ 1

0 x dx +
∫ 2

1 (2− x) dx +
∫ x

2 0 dx, x ≥ 2

=⇒ F(x) =


0, x ≤ 0
x2

2 , 0 < x ≤ 1
1
2 + 2(x− 1)− x2−12

2 , 1 < x ≤ 2
1
2 + 2(2− 1)− 22−12

2 + 0, x ≥ 2

=⇒ F(x) =


0, x ≤ 0
x2

2 , 0 < x ≤ 1
− x2

2 + 2x− 1, 1 < x ≤ 2
1, x ≥ 2

2.4.4 Statistical moments and their significance

Earlier in section 1.8, we have encountered the notion of expected value and variance of a
random variable. Thence we had defined the expectation and variance as a weighted aggre-
gate of the observables and mean squared deviation respectively. The weight factors were
taken to be the probability masses. In this section, we will extend the definitions in terms of
the distribution functions. In what follows here, we will consider X as the random variable
(discrete or continuous) and the observables x ∈ Ω. The statistical moments, defined below,
determine the shape of the distribution function and hence characterize data. Renowned
Russian mathematician Pafnuty Lvovich Chebyshev was the first to systematically define
and use statistical moments of random variables during the mid-nineteenth century.

Figure 2.13: Pafnuty
Lvovich Chebyshev
(1821–1894) was a
prominent Russian
mathematician and pro-
fessor of algebra, num-
ber theory, and proba-
bility at St. Petersburg
University (courtesy:
Wikimedia Commons).

i) Mean (µ or E(X)) is the first statistical moment.

E(X) = ∑
x∈Ω

xP(X = x) (discrete case), (2.1)

E(X) =
∫

x∈Ω
x f (x)dx =

∫
x∈Ω

xdF(x) (continuous case). (2.2)

ii) Variance (σ2 or Var(X)) is the second statistical moment.

Var(X) = E((X− µ)2) = ∑
x∈Ω

(x− µ)2P(X = x) (discrete case), (2.3)

Var(X) =
∫

x∈Ω
(x− µ)2 f (x)dx (continuous case). (2.4)

Equivalently, Var(X) = E(X2)−
(
E(X)

)2 , a result that follows by algebraically unrav-

elling the expression E((X− µ)2).
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iii) Skewness (µ̂3) is the third standardised moment.

Figure 2.14: Time series
data u(t) with positive
skewness (µ̂3 > 0).

µ̂3 = E
((

X− µ

σ

)3)
=

E((X− µ)3)

(Var(X))3/2 (2.5)

µ̂3 measures the degree of asymmetry of the probability density function. A p.d.f. that
is symmetric about the mean has zero skewness. All higher order odd moments of such
a symmetric p.d.f. will also be identically zero. Data u(t) with positive skewness is
characterized by a p.d.f. with a longer tail for X − µ > 0 than for X − µ < 0 (here X
represents the random variable that is sampled over time). Hence a positive skewness
means that deviation X − µ is more likely to take on large positive values than large
negative values. For instance, a time series data with long periods of small negative val-
ues and a few instances of large positive values, with zero temporal mean, has positive
skewness (cf. Figure 2.14).8 8 The non-normalized ver-

sion is known as the third
moment, µ3 := E

(
(X− µ)3).

iv) Kurtosis (µ̂4) is the fourth standardised moment.

µ̂4 = E
((

X− µ

σ

)4)
=

E((X− µ)4)

(Var(X))2 (2.6)

Figure 2.15: Time series
data u(t) with small
(top) and large (bottom)
kurtosis µ̂4. Large val-
ues of µ̂4 correspond to
data with intermittent
extreme events.

A p.d.f. with longer tails will have a larger kurtosis than a p.d.f. with narrower tails.
A time series data u(t) with most measurements clustered around the mean has low
kurtosis. A time series dominated by intermittent extreme events has high kurtosis.9

9 The non-normalized ver-
sion is known as the fourth
moment, µ4 := E

(
(X− µ)4).

2.4.5 Discrete and continuous probability distribution models: construction and applications

Models of the real world processes must account for the element of uncertainty that are in-
herently omnipresent. Therefore, there is a strong case for designing and using probabilistic
models that suitably capture random phenomena. In this section, we will study many im-
portant probabilistic models of both discrete and continuous processes.

Discrete probability models

i) Bernoulli distribution: This is a binary probability model with only two possible out-
comes. Some examples of this model are the outcomes of tossing a fair coin, success or
failure of a projectile in hitting its target, etc. Let us consider that the random variable X
can take one of two possible values 1 or 0 with probability p and 1− p. The probability
mass function is defined below.

X ∼ Bernoulli(p).

fX(x) =

p, when x = 1,

1− p, when x = 0.
(2.7)

The expected value and variance of a Bernoulli random variable are calculated as fol-
lows:
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E(X) = (
(
1× p) + (0× (1− p)

)
= p. (2.8)

Var(X) = ∑
x={0,1}

(x− E(X))2 fX(x) = (0− p)2(1− p) + (1− p)2 p

= p(1− p). (2.9)

Example: fixing wooden planks to a wall by a battery of nail guns

A battery of ten nail guns are fired simultaneously to affix wooden planks to
a wall. The probability that a nail gun successfully drives a nail into a wooden
plank is 0.95 (hit rate). The plank attaches to the wall if at least seven of the ten
nails are driven through the plank into the wall successfully. Do you think this
battery of guns can successfully affix planks to a wall on an average?

Let Xi ∼ Bernoulli(p = 0.95) where i = 1, 2, 3, ..., 10. Xi = 1 represents
an event that a nail is successfully driven through the plank into the wall. Xi = 0
represents a compromised nail. Consider the random variable Y = ∑10

i=1 Xi that
captures the total number of successful hits by the battery.

E(Y) = E(
10

∑
i=1

Xi) =
10

∑
i=1

E(Xi) = 10p = 9.5. (2.10)

So the average hit rate of the battery is 9.5 that is greater than 7. So, on an aver-
age, the battery of guns can be successfully used to affix planks to a wall.

Figure 2.16: A battery
of nail guns is used to
fix a wooden plank
to a wall. The fail-
ure rate of each gun
(1 − p) = 0.05 is small
enough to ensure that
the battery successfully
fixes planks to the wall
on an average.

ii) Binomial distribution: The above example demonstrates that a sequence of Bernoulli
trials can be used to a model a Binomial random process. Here, we are interested in
accounting for a random number (X) of successes (each with probability p) in n inde-
pendent Bernoulli trials.

X ∼ Bin(n, p).

fX(k) =

(n
k)pk(1− p)n−k, for k = 0, 1, 2, 3, ..., n,

0, otherwise.
(2.11)

Taking a cue from the calculation shown in equation (2.10), we can estimate the ex-
pected value and variance of a Binomial random variable as follows.

E(X) = np. (2.12)

Var(X) = np(1− p). (2.13)
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Example: Statistical moments of a binomial random variable

Let X be a binomial random variable with parameter (n, p) with probability mass
function:

p(x) = P{X = x} =
{

nCx pxqn−x, x = 0, 1, 2, · · · , n
0, otherwise,

where 0 ≤ p ≤ 1, q = 1− p, and p is the probability of success. Compute the fol-
lowing moments.
(i) E(X), (ii) E(X2), (iii) Var(X), (iv) E(X3)

Hint: Consider X2 = X(X− 1) + X and X3 = X(X− 1)(X− 2) + 3X(X− 1) + X.

Solution: We will use the following fact:

n

∑
x=0

p(x) =
n

∑
x=0

nCx pxqn−x = (p + q)n = 1.

nCx =
n
x
·n−1 Cx−1 =

n
x
· n− 1

x− 1
·n−2 Cx−2 = . . .

a)

E(X) =
n

∑
x=0

xp(x) =
n

∑
x=0

x nCx pxqn−x

=
n

∑
x=0

n ·n−1 Cx−1 pxqn−x

= np
n

∑
x=0

n−1Cx−1 px−1q(n−1)−(x−1)

= np(p + q)n−1.

E(X) = np.

b)

E(X)(X− 1) =
n

∑
x=0

x(x− 1)p(x) =
n

∑
x=0

x(x− 1) nCx pxqn−x

=
n

∑
x=0

n(n− 1) ·n−1 Cx−1 pxqn−x

= n(n− 1)p2
n

∑
x=0

n−2Cx−2 px−2q(n−2)−(x−2)

E(X)(X− 1) = n(n− 1)p2(p + q)n−2 = n(n− 1)p2.

Using the hint above, we get

E(X2) = E(X)(X− 1) + E(X)

= n(n− 1)p2 + np

= n2 p2 − np2 + np

= n2 p2 + np(1− p)

E(X2) = n2 p2 + npq.



probability distributions 61

c)
Var(X) = E(X2)− (E(X))2

= n2 p2 + npq− (np)2.

Var(X) = npq.

d) Following the steps in part b),

E(X)(X− 1)(X− 2) = n(n− 1)(n− 2)p3.

E(X3) = E(X)(X− 1)(X− 2) + 3E(X)(X− 1) + E(X),

E(X3) = n(n− 1)(n− 2)p3 + 3n(n− 1)p2 + np.

Example: free cola tasting and smart marketing campaign

Boca-cola is a newly emerging cola brand in the market that faces stiff competi-
tion from a very popular and old cola brand namely Moca-cola. Both colas look
the same. The Boca-cola company made a smart move of inviting one hundred
sworn customers of Moca-cola to a free cola tasting campaign during the innings
interval of the world cricket championship final held in the city of Borgo Verde.
Two anonymous samples of cola (one from each brand) was offered to each of the
hundred tasters and they were asked to vote their preference. The Boca-cola com-
pany made profitable use of the Binomial distribution which has most of its mass
concentrated within three standard deviations of the mean. The following calcu-
lations demonstrate how they made a compelling case for a surge in Boca-cola
sales even in the face of stiff competition from their bigger rival Moca-cola.

Figure 2.17: Boca-cola
vs Moca-cola contest:
two colas in a blind
taste campaign.

Figure 2.18: The p.m.f.
of Y ∼ Bin(100, 0.5).

The campaign was successful on the premise that a typical Moca-cola drinker
will not be able to tell the difference between two colas during a blind test.
Hence, they are equally likely to prefer one cola over the other (i.e., probabil-
ity that a random participant in the blind cola tasting test prefers Boca-cola (or
Moca-cola) is one-half, p = 0.5). Consider a Bernoulli random variable X which
takes a value 1 (when Boca-cola is preferred) or 0 (when Moca-cola is preferred).

Let Y =
100
∑

i=1
Xi denote the number of instances when a sworn Moca-cola drinker

preferred the Boca-cola during the blind test. Clearly, Y ∼ Bin(n = 100, p = 0.5).
The following lines of Matlab code is used to construct the relevant probability
mass function of Y (cf. Figure 2.18).

n = 100; p = 0.5;

x = 0:n;

y = binopdf(x,n,0.5);

figure, bar(x,y,1);

xlabel(’Observables’);

ylabel(’Probability mass function’);
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set(gca,’FontSize’,60);

The mean and variance of Y is calculated as E(Y) = np = 100 × 0.5 = 50 and
σ2 = Var(Y) = np(1− p) = 25 =⇒ σ = 5. It is clear from the profile of the dis-
tribution of Y in Figure 2.18 that almost all the probability mass is concentrated
between Y = 35 and Y = 65, i.e. within three standard deviation of the mean.
Therefore, P(Y ≥ 35) ≈ 1 which signifies that more than 35% of sworn Moca-cola
drinkers prefer the newly launched Boca-cola.10 A 35% switch by sworn clients of
a competing brand was indeed a compelling advertisement campaign!

10 We can check using the Matlab command »sum(y(35:end)) that P(Y ≥ 35) = 0.9996 ≈ 1.

iii) Geometric distribution: Consider a sequence of Bernoulli trials with probability of suc-
cess equal to p. Let X be the number of failures before the first success. The probability
mass function for such a random variable is defined as follows.

Geometric distribution of type-0

X ∼ geom0(p)

P(X = x) =

(1− p)x p, for x = 0, 1, 2, 3, ...,

0, otherwise.
(2.14)

E(X) =
1− p

p
(2.15)

Var(X) =
1− p

p2 (2.16)

If Y is the random variable that counts the number of Bernoulli trials until first success,
the p.m.f. of Y is slightly different from the case above as mentioned below.

Figure 2.19:
Cunning fox, while pass-
ing by,
Thought to taste some
grapes on high,
So he leaps, and leaps
again,
For they say - there is no
gain without pain!
The story of the fox and
the grapes, adapted
from Aesopica, is an old
anthem to learn new
math tricks with the
geometric distribution.

Geometric distribution of type-1

X ∼ geom1(p)

P(Y = y) =

(1− p)y−1 p, for y = 1, 2, 3, ...,

0, otherwise.
(2.17)

E(X) =
1
p

(2.18)

Var(X) =
1− p

p2 (2.19)
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Example: Derivation of E(X) = 1
p for X ∼ geom1(p)

We will begin with the definition of expectation.

E(X) = ∑
x=1,2,...

xP(X = x)

= ∑
x=1,2,...

x(1− p)x−1 p

= p ∑
x

x(1− p)x−1 =: S (2.20)

Consider S1 = ∑
x=1,2,...

(1− p)x = 1
1−(1−p) which is a convergent infinite geometric

series. dS1
dp = ∑

x=1,2,...
x(1− p)x−1(−1) = − 1

p2 . Therefore, using equation 2.20, S =

1
p2 and consequently E(X) = 1

p .

Likewise, using Var(X) = E(X2) − (E(X))2, writing E(X2) = E(X(X − 1)) +
E(X), and following similar steps as shown above here, we can deduce the ex-
pression for Var(X) = 1−p

p2 .

The distribution function (c.d.f.) of the geometric distribution of type-1 is FX(k) :=
P(X ≤ k) = 1− P(X > k). P(X > k) can be calculated as follows.

P(X > k) = P(X = k + 1) + P(X = k + 2) + · · ·
= (1− p)k p + (1− p)k+1 p + · · ·
= (1− p)k p

(
1 + (1− p) + (1− p)2 ++ · ··

)
= (1− p)k p

1
1− (1− p)

= (1− p)k (2.21)

Therefore, FX(k) = 1− (1− p)k.
Figure 2.20: Bummer
spent the whole day
in class wondering
whether or not he
flushed the toilet before
he left his apartment!
Does our friend Bum-
mer have a cognitive
state that follows the
geometrical distribu-
tion? (Courtesy: Michael
Tran, Daily Bruin).

Example: Memoryless property of geometric distribution

Any random variable X has a memoryless property if, for any n, m ≥ 0, we have
P(X > n + m

∣∣X > m) = P(X > n). We will demonstrate that this is certainly true
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of the geometric random variable X ∼ geom1(p).

P(X > n + m
∣∣X > m) =

definition of conditional probability

P({X > n + m} ∩ {X > m})
P(X > m)

=
P(X > n + m)

P(X > m)

=
(1− p)n+m

(1− p)m

= (1− p)n

=

using equation 2.21

P(X > n) (2.22)

Practically what this means is the following. Suppose we are about to start flipping a
fair coin for which the probability of observing a head is p. Then the probability distribu-
tion of X := “number of flips until the first head is observed” is geom1(p). Now suppose
that the first m flips are tails. Then the probability distribution of the new random vari-
able Y := “number of additional flips until the first head is observed” is still geom1(p). It
is as if the knowledge of the outcomes of the first m flips has been lost from memory! The
geometric distribution is the only known discrete probability distribution with
this property.

iv) Poisson distribution: The number of occurrences of an event (e.g., arrival of busses in
a bus stand, calls to a telephone operator, etc.) in a fixed interval of time can be ran-
dom. In order to derive an expression for the distribution of such a random variable,
we make two fundamental assumptions about the random instantiations (henceforth
referred to as “arrivals”).

(a) Homogeneity: The arrival rate λ is constant with respect to time. The expected num-
ber of arrivals in a given interval of time ∆t is λ∆t. This is also known as weak station-
arity as will be discussed in one of the latter chapters in this book.

(b) Independence: The number of arrivals in any two disjoint intervals of time are inde-
pendent of each other.

Let Nt be the number of arrivals in an interval [τ, τ + t] for any τ > 0. We seek to know
the distribution of Nt. Homogeneity implies that E(Nt) = λt. Next, we proceed with
constructing n canonical intervals of time t/n in such a way that as n → ∞, Mj is a
Bernoulli random variable representing the number of arrivals (0 or 1) in the interval
Ij,n := [(j − 1) t

n , j t
n ] for any j ∈ I. By definition, E(Mj) = 0(1− pj) + 1(pj) = pj =

E(N t
n
) = λ t

n where pj is the probability that Mj = 1 and (1− pj) is the probability that
Mj = 0 in the interval Ij,n.11 Consequently, 11 This is a direct consequence

of the homogeneity axiom:
E(N∆t) = λ(∆t).

Nt =
n

∑
j=1

Mj ∼ Bin(n, p),

where p ≡ pj = λ t
n .12 Therefore, 12 Here we have used the fact

that the number of arrivals
(successes) Nt in n Bernoulli
trials is Bin(n., p) where p is
the probability of one arrival
(success) in each canonical
interval t

n .
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P(Nt = k) =
(

n
k

)(
λt
n

)k(
1− λt

n

)n−k

, (2.23)

for k = 0, 1, 2, ..., n. Explicitly, we have not yet considered the assumption n → ∞ in the
mathematical expressions above. We hope that after taking this limit, the distribution
function will stabilize. We will consider the limit of each of these terms separately and
collate the results thereafter.

Figure 2.21: The num-
ber of calls received per
hour by a telephone op-
erator follows a Poisson
distribution.

lim
n→∞

(
n
k

)
1
nk = lim

n→∞

n
n

n− 1
n
· · · n− k + 1

n
1
k!

=
1
k!

, (2.24)

lim
n→∞

(
1− λt

n

)n

=

result from elementary calculus

e−λt, (2.25)

and certainly

lim
n→∞

(
1− λt

n

)−k

= 1. (2.26)

Now combining the results from equations 2.24, 2.25, and 2.26, we have

lim
n→∞

P(Nt = k) =
(λt)k

k!
e−λt. (2.27)

By carefully inspecting the term on the right hand side of equation 2.27, we notice that
the following result holds.

e−λt
∞

∑
k=0

(λt)k

k!
= e−λteλt = 1. (2.28)

Results 2.27 and 2.28 entail that we have indeed chanced upon a legitimate probability
distribution (the Poisson distribution) that complies with the unitary axiom of probability
over the sample space Ω = {0, 1, 2, · · ·}. In the expression on the right hand side of
equation 2.27, we have only one parameter λt. This chain of thought motivates the
definition of the Poisson distribution with parameter µ > 013 to model the counting 13 You may think of µ as λt.

process of random number of arrivals in fixed intervals of time.

X ∼ Poisson(µ)

P(X = k) =
µk

k!
e−µ for k = 0, 1, 2, ... (2.29)

E(X) = µ (2.30)

Var(X) = µ (2.31)

The mean can be deduced from the fact that in the preceding paragraph Nt ∼ Bin(n, λt
n )

and hence E(Nt) = n λt
n = λt, ∀n. Further, limn→∞ Var(Nt) = limn→∞ n λt

n

(
1− λt

n

)
=
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λt. Therefore, for X ∼ Poisson(µ), we expect that E(X) = µ and Var(X) = µ. In fact,

E(X) =
∞

∑
k=0

k
µk

k!
e−µ

= e−µ
∞

∑
k=1

µk

(k− 1)!

= µe−µ
∞

∑
k=1

µk−1

(k− 1)!

= µe−µ
∞

∑
j=0

µj

j!

= µe−µeµ

= µ. (2.32)

The calculation for Var(X) follows a similar approach and is left to the reader as a self-
exercise.

Figure 2.22: The saga of
your insurance claims
may have been scripted
by the French Math-
ematician - Siméon
Denis Poisson (courtesy:
Wikimedia Commons).

Example: Risk of loss incurred by Carepal from insurance payouts

A watered-down version of the chapter project is considered in this example.
A workers’ insurance company named Carepal has introduced a new insurance
policy for factory workers to cover certain types of injuries sustained at work.
Since a worker may be inflicted by a diverse type of injuries in the factory, and
that the insurance policy may not be applicable for all types of injuries as per the
coverage plan, only a certain number out of the total claims get re-reimbursed
by Carepal. Further, the insurance scheme allows only a standard payment of
| 1,00,000 for all claims approved by Carepal. The annual premium for the policy
is | 15 for each insured person. Based on claims data available with the company,
it was found that on an average, a total of about 100 claims per year get approved
for similar schemes. There are about 10, 00, 000 policy holders of this scheme.
What is the risk (calculated in terms of a probability) that this factory workers’
scheme will yield an annual loss for Carepal?14

The insurance scheme is designed in such a manner that the probability of suc-
cessful approval of any given claim is very small. Of course not all claims made
by the workers will get approved by Carepal. Thus, from the perspective of a pol-
icy period, there are several probability events being played out at once whence
only those claims that will be eventually approved by Carepal may be regarded
as a successful instantiation of a claim (event). Let X denote the total number of
claims that will be approved by Carepal during one policy period of a single year.
Consequently, X may be regarded as a Poisson random variable with rate µ = 100
such that E(X) = 100 and Var(X) = 100. Carepal will incur an annual loss if the
aggregate of all claims payouts turns out to be greater than the total revenue gen-
erated by selling this insurance scheme to 10,00,000 customers. Let us use Matlab
to compute the critical number of approved claims that will determine whether
Carepal incurs loss from this insurance scheme.
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total_customers = 1000000;

premium = 15;

std_pay_per_claim = 100000;

total_payout_for_loss = 15000000;

mu = 100;

income = premium*total_customers;

Number_payouts = total_payout_for_loss/std_pay_per_claim;

Here the value of Number_payouts turns out to be 150 which is the critical number
of approved claims above which the company will incur loss. Our next objec-
tive is to estimate the probability that more than 150 numbers of claims will be
approved by Carepal in the given policy year.15

P(X > Number_payouts) = 1−
Number_payouts

∑
k=0

e−µ µk

k!

is calculated as follows.

k = [0:1:Number_payouts];

prob_mass_of_payouts = exp(-mu)*(mu.^k)./(factorial(k));

Risk_of_loss = 1 - sum(prob_mass_of_payouts)

It turns out that Risk_of_loss = 1.2331e-06, i.e. Carepal’s probability of in-
curring a loss from this scheme is incredibly minuscule and the said insurance
scheme is risk free by and large.

14 Here we are interested in knowing the risk of incurring an annual loss stemming from this particu-
lar insurance scheme alone.
15 Note that Carepal cannot simply enforce a hard stop on its claims approval process in order to
arrest a likely annual loss in its business because such an intervention would severely dent its rep-
utation and credibility as a trusted insurance company among factory workers. Further, it cannot
raise its premium arbitrarily because such a measure would almost certainly play into the hands of its
competitors.

Poisson heuristic: Recall that the construction of the Poisson distribution, as elucidated
above, demands that the probability of an event happening (arrival) is small. Specifi-
cally, it is proportional to λt

n where n → ∞ which makes λt
n → 0. Further, recall that

the number of arrivals in any fixed time interval were assumed to be independent. It
turns out that even if we relax the criterion of independence and consider weakly depen-
dent Bernoulli trials, the Poisson distribution (more specifically the Poisson heuristic) may
still provide a reasonable estimate. We will demonstrate this point with the help of an
example below.

Figure 2.23: If love is
blind then there is per-
haps a case for blind
dates and some Poisson
heuristics.

Example: your luck with the blind dating app RATATOON

RATATOON is a new mobile application for blind dates. It is hosted on several
cloud based servers. Every month, up to 20 randomly picked clients (10 men and
10 women) from the RATATOON provincial database can register on one of their
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cloud servers. The intelligence integrated within the software application ensures
that hugely different profiles (for instance men and women more than 20 years
apart in age, etc.) are not usually hosted on the same server in order to avoid
absurd match-ups. Each server allows its customers to post a preferred date ev-
ery month when they may be up for a blind date. The app locks in a potential
blind date if the preferred dates of any two clients (one man and one woman)
are within one day of each other and it is left up to the pair if they are willing to
make this minor adjustment in their chosen dates. After a date is locked in, the
individual pairs may decide whether to proceed with the date or not but chances
are that they will give it a shot. What is the probability that two or more clients
are matched up for a date by a RATATOON server every month? Further, what
is the probability that at least 5% of the possible pair-ups (combinations) are
matched-up for blind dates by RATATOON?

Had RATATOON paired up potential dates only if the preferred dates of each
man and woman in the pair matched identically, then there is a precise and direct
way of computing the required probability. However, by allowing up to one day
difference in their preferred dates, the probability in question becomes very diffi-
cult to calculate exactly. In this case, the Poisson heuristic provides a reasonably
good approximation of the asked probability.
We begin by identifying the total number of all possible pairs of men and women
from a pool of 10 men and 10 women. A combination is represented as (Mj, Fj)

where M stands for a man and F stands for a woman, and j = 1, 2, ..., 10 tags
each of the ten men and women registered in the same server. This computation
may be undertaken by asking in order to fill up each of two slots that constitute
a pair, the first slot may be filled up in 10 different ways (corresponding to the
10 different men) and the second slot may be filled up in 10 different ways for
similar reasons. Thus there are a total of n = 10× 10 = 100 trial combinations out
of which some combinations may lead to a match-up if the preferred dates of the
individuals are within a day of each other (the latter are the successful trials). It is
not too difficult to find that each of the n trials have the same success probability
p = 3

30 .16 Each of the day of a month may be mapped to an empty slot of a 30

slot array. For the ith combination (Mi, Fi), let us suppose that Fi picks the slot k.
Now, if Mi picks any of the 30 slots but (k− 1), k or (k + 1), then it will be a failed
match-up. This failure can happen with a probability pc = 27

30 and this estimate
will be true of any failed match-up. Thus the probability of success for any com-
bination (M, F) is p = 1 − pc = 1 − 27

30 = 3
30 = 0.1.17 Let X denote a random

variable that denotes the number of successful trials (match-ups). Then the prob-
ability that two or more clients are matched-up for a date by RATATOON is the
same as P(X ≥ 1).
A careful reflection of the situation reveals that the aforementioned Bernoulli tri-
als are weakly dependent (as opposed to being independent). This is because that it
is extremely unlikely that preferred dates coming from a diverse population will
be clustered together. Consider F1 prefers the 14th of the month and M1 picks the
13th. (M1, F1) turns out to be a match-up because each of their preferences belong



probability distributions 69

to the set
(
[12, 14] ∩ [13, 15]

)
. Additionally, (M1, Fi) for i = 3, 5 are also match-

ups due to similar date preferences (e.g., [12, 14]). But with every such match-up
for M1, it becomes less probable that (M1, Fj), where j ̸= 1, 3, 5, will also be a
match-up because it is unlikely that all women from the pool of 10 would have
preferred dates between 12th and 14th of the month (unless of course we are talk-
ing about special months like February when many single women (and men) may
prefer dates around a special day on the 14th of February which is valentine’s
day). Thus, in some sense, the outcome of two different trial combinations may
bear some element of dependency. This dependence of trial outcomes may be
considered weak because of a relatively large number (30) of available preferred
dates.18

Therefore, X ≈ Poisson(µ) where µ = np = 100× 0.1 = 10. Consequently,

P(X ≥ 1) ≈ 1− P(X = 0) = 1− e−µ = 0.9999546. (2.33)

Further,

P(X ≥ 5) ≈ 1−
k=4

∑
k=0

P(X = k) = 0.97074731. (2.34)

16 For simplicity, we have considered only 30 day months.
17 For preferred dates on the start and the end of the month, we have considered that the possible
match-up dates can be 30th, 1st, 2nd and 29th, 30th, 1st.
18 The estimate would be better if the available number of preferred dates was larger, for example,
instead of considering match-ups every month, one could consider match-ups every three months.

In order to establish the veracity of the calculations and results of the above example,
we will design a simple computer experiment whereby ten male and ten female bots
will randomly pick their preferred dates for a blind date on a given month. Conse-
quently, match-ups will be generated by the computer by considering those pairs that
have preferred to go on a blind date within a day of each other. This experiment is re-
peated one hundred thousand times in order to estimate the probability that at least a
certain percentage (q) of pair-ups are matched-up for a blind date. This experimental re-
sult is then compared with the theoretical estimations prescribed by the above example.

%%%%%%%%%%%%%%%%%%%%%%%%%%% START of CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% start of parameters %%%%%%%%%%%%%

nm = 10; % num of males

nf = 10; % num of females

n=nm*nf; % total number of possible pair-ups (combinations)

total_period = 30; % duration of monthly cycle of blind match-ups

match_interval = 3; % this ensures that a match-up happens when the preferred

%dates of a male and female pair is within a day of each other

match_percent = 5; % minimum target match-ups in percentage

req_matchups = ceil(0.01*match_percent*n);% 0.0x*n means atleast x% must be

%matchups

kmax = req_matchups - 1; % the running index for the Poisson heuristic

nmax = 100000; % number of times the computer experiment is conducted

%%%%%%%%%%%%% end of parameters %%%%%%%%%%%%%
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match_cnt = 0;

for i=1:nmax

% RATATOON

males = ceil(total_period*rand(1,nm)); % list of date preferences by

% by males

females = ceil(total_period*rand(1,nf));% list of date preferences by

% by females

[men,women] = meshgrid(males, females);

pairs = [men(:) women(:)]; % all pair-ups are stored in matrix form

diff_pairs = mod(abs(pairs(:,1) - pairs(:,2)),total_period); % difference

% between dates preferred by

% the male and the female in a

% pair

Ans = [diff_pairs pairs]; % concatenating diff_pairs and pairs in one matrix

matchups = find(Ans(:,1)<=1); % matchups happen if diff_pairs is within

% one unit

num_matchups = length(matchups);

prob_sim_matchups = num_matchups/(n); % this is not really necessary but

% just for fun to compare with

% p

if num_matchups >= req_matchups % this condition calculates the required

match_cnt = match_cnt + 1; % probability over multiple repetition

else % of the experiment

continue;

end

end

prob_sim_final = match_cnt/nmax; % experimental estimate of the required

% probability

% poisson heuristic approximation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

p=(1 - ((total_period - match_interval)/total_period)); % p = 1 - pc

mu = n*p;

k=[0:kmax];

prob = 1-sum(exp(-mu)*(mu.^k)./(factorial(k))); % calculating the required

% probability by using the

% Poisson heuristic

prob_final = vpa(prob,8); % expressing the answer up to 8 decimal places

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END of CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The results of the above computer experiment are elucidated graphically in Figure
2.24. Firstly, the theoretical predictions of the Poisson heuristic is strikingly similar
to the actual simulated probability values. This establishes the veracity of the Pois-
son heuristic when n is large, p is small, and µ = np is of moderate magnitude.
Secondly, both simulated and the Poisson model demonstrate that the probability,
P(X ≥ minimum match percentage), decreases with increasing values of the mini-



probability distributions 71

Figure 2.24:
Comparison between
simulated experiment
of dating match-ups
and theoretical pre-
dictions of the same
clearly shows that the
Poisson heuristic is a
very good approxima-
tion when n is large, p
is small, and µ = np is
moderate in magnitude.

mum match percentage (mmp). Thirdly, both simulated and the Poisson model show
that the corresponding probabilities fall significantly with increasing duration of the
experiments for the same mmp. This entails that in order to keep clients hooked to the
RATATOON application, it may be economically prudent (from a profitable business
perspective) to keep the duration (period) of the subscriptions shorter (monthly as op-
posed to yearly). In the experiments and analyses considered here, we have chosen a
fairly large sample size of 100 clients per server to ensure statistical validity of reported
findings.

There are several interesting examples illustrating the utility of the Poisson heuristic.
Some of the more familiar ones in the literature are that of the birthday problem and the
matching problem. Interested readers are referred to the texts mentioned in the chapter
bibliography. These problems have many important applications in cryptography and
information security. We will return to the Poisson distribution once again during our
discussion of the chapter project. Poisson processes will also be discussed in chapter
sections pertaining to Markov chains and queuing models.

v) Uniform distribution (discrete): Let X ∼ Uni f ([1, m]) be a random variable on m suc-
cessive integers starting with 1. Each outcome has an associated identical probability
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(uniform) prescribed as follows.

Figure 2.25: Rolling a
die yields an outcome
that has equal proba-
bility of happening as
that of any other possi-
ble outcomes (courtesy:
Wikimedia Commons).

X ∼ Uni f ([1, m])

pi = P(X = i) =
1
m

, ∀i ∈ [1, m]

E(X) =
m

∑
x=1

x
1
m

=
(m + 1)

2

Var(X) = E(X2)−
(
E(X)

)2
=

m2 − 1
12

A simple example is the outcome of rolling a six-sided die. Each of the m = 6 sides
has a probability of occurrence equal to 1

m = 1
6 . We will again return to the uniform

distribution when we discuss continuous random variables.

vi) Negative-Binomial and Pascal distributions: In many practical situations we may be
interested in knowing the chance of the rth success of Bernoulli trials in ν = r + k trials,
where k = 0, 1, 2, .... This situation is equivalent to occurrence of exactly k failures prior
to r successes. So if X is the random variable that denotes ν = k + r trials for the rth

success to occur, we may also re-phrase this as counting ν − 1 = r + k − 1 trials with
exactly k failures and a success in the very next trial. The number of possible ways this
may happen is obviously (r+k−1

k ) = (ν−1
k ). This beckons the definition of the probability

mass function as follows.

X ∼ Pa(k; r, p) or X ∼ NB(k; r, p)

P(X = k) =

(
r + k− 1

k

)
(1− p)k pr ≡

(
−r
k

)
(−(1− p))k pr for k = 0, 1, 2, 3, ...

Indeed, it may be verified that
∞
∑

k=0
P(X = k) = 1 is true as demanded by the unitarity

axiom of probability. This entails that an infinite sequence of Bernoulli trials is bound to
yield r successes. Thus we may infer that the Pascal or negative binomial distribution is
a model for the waiting time to the rth success.

Example: Did Blaise Pascal play badminton?

A game of badminton involves two players Li Pen and Brendon Hart with skill
levels p = 0.6 and h = 0.4 respectively. Here skill levels may be interpreted as
probabilities of winning a rally by the respective players. In order to win a game
of badminton, 21 individual victories are required by either player. Further, con-
sider that a game can last at most 41 rallies (i.e. a winning scoreline of 21 − 20 is
permissible by the rules of the game). Answer the following questions.

i. What is the probability that Li Pen will win the game of badminton against
Brendon Hart in 26 rallies?

ii. What is the probability that Li Pen will the game of badminton against Bren-
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don Hart?

iii. Whats is the probability that a game of badminton between Pen and Hart
will end in 26 rallies?

We proceed with the calculations inspired by our formulation of the Pascal distri-
bution above.

i. A game lasts at least 2ν + 1 = 21 rallies and at most 4ν + 1 = 41 rallies.
Thus ν = 10. So if Pen wins at rally number 4ν + 1 − r = 26, we have r =

15. Let us define Pr = P15 as the probability that Pen wins the game in 4ν +

1 − r = 26 rallies. Then, Pen must have won 2ν = 20 out of 4ν − r = 25
rallies and lost 5 out of 25 rallies. Thus, P(Pen wins in 26 rallies) = P15 =

(25
20)(0.6)21(0.4)5 = 0.0119.

ii. P(Pen wins) = P(Pen wins in 1 rally) + P(Pen wins in 2 rallies) + ... +
P(Pen wins in 41 rallies) = P20 + P19 + ... + P1 + P0 = 0.9035.

iii. P(game ends in 26 rallies) = P15 + H15 = 0.0120 where H15 =

(25
20)(0.4)21(0.6)5.

Figure 2.26: A game of
badminton between Li
Pen and Brendon Hart.

Continuous probability models

i) Exponential distribution: X is a positive continuous random variable with rate parame-
ter µ > 0. X is exponentially distributed with the p.d.f. prescribed below.

X ∼ exp(µ)

fX(x) =

µe−µx for x > 0;

0, otherwise.

E(X) =
1
µ

Var(X) =
1

µ2 .

If we consider the case of Poisson distributed arrivals in a fixed interval of time, then
the inter-arrival times are exponentially distributed random variables. The c.d.f. is
FX(x) = P(X ≤ x) =

∫ x
−∞ f (ζ)dζ where f is the p.d.f. mentioned above. It follows

that

FX(x) =

1− e−µx for x ≥ 0;

0 for x < 0.
(2.35)
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Example: Memorylessness of the exponentially distributed random variable

A continuous random variable X has a memoryless property if

P
(
X > t + s

∣∣X > s
)
= P(X > t) for all t > 0,

regardless of the value of s > 0. This is easy to show because if we consider the
definition of the conditional probability, then

P
(
X > t + s

∣∣X > s
)
=

P(X > t + s)
P(X > s)

=
−µ(t + s)

e−µs = e−µt = P(X > t).

The exponential distribution is the only known continuous distribution with the
memoryless property.

Perhaps in light of the above example and the one discussed earlier using the geometric
distribution about the memoryless property, it is not difficult to intuit that there must be
a connection between the exponential distribution and the geometric distribution. This
is further unravelled by the following discussion. Exponentially distributed random
variables are used to model time until the occurrence of a rare event.

Example: Equivalence of geometric and exponential distributions

Recall from equation 2.21 that for X ∼ geom1(p), we have P(X > k) = (1 − p)k.
This means FX(k) = 1− (1− p)k. Further, let T ∼ exp(µ) whence FT(t) = 1− e−µt.
If we suppose µ = − log(1− p) and t = ⌊nτ⌋19 for all τ > 0 and n = 0, 1, 2, 3, ...,

then clearly FX(⌊nτ⌋) = 1− e
(

log(1−p)
)
⌊nτ⌋ = 1− (1− p)⌊nτ⌋ = FT(⌊nτ⌋), i.e. the

probability distributions of X (geometrically distributed random variable) and T
(exponentially distributed random variable) are the same.
The connection may also be established by considering the case when the ex-
ponentially distributed random variable T ∈ (n − 1, n] for n = 1, 2, 3, ... and
p = 1− e−µ (equivalently, µ = − log(1− p)).

P(n− 1 < T ≤ n) = FT(n)− FT(n− 1)

= (1− e−µn)− (1− e−µ(n−1))

= p(1− p)n−1. (2.36)

The r.h.s. of equation 2.36 is identical to the p.m.f. of the geometrical distribution
of type-1 (i.e. P(X = n)).

19 Here ⌊ ⌋ is the greatest integer function akin to the floor operation. For instance, ⌊2.63⌋ = 2.

There is a more rigorous relationship between the geometric distribution and the ex-
ponential distribution that we will simply state here without providing a proof. Let
Zn = Yn

n where Yn is a geometric random variable with parameter pn = λ
n and n > λ > 0. Then

Zn converges in distribution20 to an exponential random variable with parameter λ. 20 Let X1, X2, ... be a se-
quence of real-valued random
variables that converges in

distribution to X, Xn
D→ X,

if limn→∞ Fn(x) = F(x) for
all x ∈ R at which F(x) is
continuous. Fi(x) is the c.d.f.
of Xi , ∀i = 1, 2, ... and F(x) is
the c.d.f. of X.

Figure 2.27: This single
engine jet has an aux-
iliary power unit as a
backup during engine
failure. How likely will
this built-in redundancy
prove to be helpful af-
ter one hundred flying
hours?
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Example: Chance of total power failure in a single-engine jet aircraft

Most single-engine jet aircrafts have an auxiliary power unit (APU) as backup
power supply in case of an engine failure. Typically the APU is activated when
the main engine fails and while the pilot initiates an engine re-start procedure. If
the APU also fails in flight in addition to the main engine, then we have a total
system (power) failure. The lifetime of an operating power unit is exponentially
distributed with expected value 1

µ . Let X denote the time until the first total sys-

tem failure. It can be shown that E(X) = 2−e−µτ

µ(1−e−µτ)
= 500 flying hours, where

τ > 0 is the fixed time to re-start the main engine. What is the probability that the
aircraft will encounter a total system failure after 100 flying hours?

P(X > 100) ≈ e−
100

E(X) = 0.8187, i.e. there is a 82% chance of a total system failure
after 100 flying hours.

Below, we have provided a summary of few other continuous probability distributions.

ii) Gamma distribution: Here the parameters α > 0 is a scale parameter and β > 0 is a rate
parameter. Γ(α) is the well known gamma function.

X ∼ Gamma(α, β)

fX(x) =


βα

Γ(α) xα−1e−βx for x > 0;

0, otherwise.

E(X) =
α

β

Var(X) =
α

β2 .

The Gamma distribution is used to model aggregate insurance claims and the amount
of rainfall accumulated in a reservoir. It is used for modelling attenuation of signal
strength in wireless communications. It finds applications in oncology for modelling
age distribution of cancer incidence. It is also used in Bayesian statistical models.

Example: Statistical moments of the gamma function.

The probability density function of a continuous random variable X with param-
eter λ > 0 is given by:

f (x) =

{
kxe−λx x ≥ 0

0 otherwise

Find out the value of k, mean and the variance.
Hint: Properties of gamma function Γ(p) =

∫ ∞
0 e−xxp−1 dx.
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• Γ(p)
αp =

∫ ∞
0 e−αxxp−1 dx.

• Γ(n) = (n− 1)! ∀ n ∈N.

Solution: Recall that the p.d.f. of a random variable integrates to unity.∫ ∞

0
kxe−λx = 1

k× Γ(2)
λ2 = 1

k =
λ2

Γ(2)

k = λ2.

f (x) = λ2xe−λx, x ≥ 0, λ > 0

E(X) =
∫ ∞

0
x f (x) dx = λ2

∫ ∞

0
x2e−λx dx = λ2 Γ(3)

λ3 =
2
λ

.

E(X2) =
∫ ∞

0
x2 f (x) dx = λ2

∫ ∞

0
x3e−λx dx = λ2 Γ(4)

λ4 =
6

λ2 .

Var(x) = E(X2)− (E(X))2 =
6

λ2 −
(

2
λ

)2
=

2
λ2 .

iii) Beta distribution: Here both the parameters α > 0 and β > 0 are shape parameters.
B(α, β) = Γ(α)Γ(β)

Γ(α+β)
is the beta function that is defined here in terms of the gamma func-

tion.

X ∼ Beta(α, β)

fX(x) =


xα−1(1−x)β−1

B(α,β) for x ∈ [0, 1];

0, otherwise.

E(X) =
α

α + β

Var(X) =
αβ

(α + β)2(α + β + 1)
.

The Beta distribution is used in the theory of order statistics, in subjective logic in the
form of posteriori probability estimates of binary events, and in wavelet analysis. Beta
distribution is also used in project management models.

iv) Pareto distribution: Here the parameters xm > 0 and α > 0 are scale and shape parame-
ters respectively. Γ(α) is the well known gamma function.

Figure 2.28: The Pareto
distribution is named
after Italian sociolo-
gist Vilfredo Pareto
(courtesy: Wikimedia
Commons).
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X ∼ Pareto(xm, α)

fX(x) =

 αxα

xα+1 for x ∈ [xm, ∞);

0, otherwise.

E(X) =

∞, for α ≤ 1
αxm
α−1 , for α > 1

Var(X) =

∞, for α ≤ 2
αx2

m
(α−1)2(α−2) , for α > 2

The Pareto distribution was originally used to model the distribution and allocation of
wealth among individuals in a society where the greatest fortune is owned by a small
fraction of the population.

v) Uniform distribution (continuous): Here the parameters −∞ < a < b < ∞ define the
extent of the uniform distribution.

X ∼ Uni f (a, b)

fX(x) =

 1
b−a for x ∈ [a, b];

0, otherwise.

E(X) =
a + b

2

Var(X) =
(b− a)2

12
.

vi) Normal distribution (a.k.a. Gaussian distribution):

We will take a more detailed look at this familiar bell-shaped Normal distribution in
the chapter on Statistical Experiments. Here we shall summarize some very essential
features. In what follows, µ can be negative or positive but finite, σ2 > 0 by definition.

X ∼ N(µ, σ2)

fX(x) =
1√
2πσ

e−
(x−µ)2

σ2 for x ∈ R;

E(X) = µ

Var(X) = σ2.

Normal distribution is one of the most widely used probability models in statistics
partly because of their relevance in connection to the central limit theorem which we
will discuss later.
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Example 1: Statistical moments of a continuous random variable

Let X be a continuous random variable with p.d.f.

f (x) = cx(2− x), 0 ≤ x ≤ 2, where c is a constant.

(a) Find E(Xr), where r ∈N.
(b) Find mean and variance of X using the result of part (a).

Solution:
(a)

c
∫ 2

0
(2x− x2) dx = c

(
4− 8

3

)
=

3c
4

= 1⇒ c =
3
4

.

f (x) =
3
4

x(2− x).

E (Xr) =
∫ 2

0
Xr f (x) dx

=
3
4

∫ 2

0

(
2 · xr+1 − xr+2

)
dx

=
3
4

(
2 · xr+2

r + 2
− xr+3

r + 3

)2

0

=
3
4

2r+3
(

1
r + 2

− 1
r + 3

)
= 3 · 2r+1

(
1

r + 2
− 1

r + 3

)
E(Xr) =

3 · 2r+1

(r + 2)(r + 3)
.

(b)
Mean = E(X)

=
3 · 21+1

(1 + 2)(1 + 3)

= 1.

E(X2) =
3 · 22+1

(2 + 2)(2 + 3)

=
6
5

.

Var(X) = E(X2)−
(
E(X)

)2

=
6
5
− 12

=
1
5

.

2.4.6 Example 2: Computing probability of a chance event from the p.d.f.

Let X be a continuous random variable with p.d.f.

f (x) =

{
a(1 + x2), 2 ≤ x ≤ 5

0, otherwise,
, where a is a constant.
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(a) Find the value of a.
(b) Find P{X < 4}.

Solution:
(a)

=⇒
∫ 5

2

(
a
(

1 + x2
)

dx = 1

=⇒ a((5− 2) +
1
3
(125− 8)

)
= 1

=⇒ a
(

9 + 117
3

)
= 1

=⇒ a =
3

126
=

1
42

.

(b)

P{X < 4} =
∫ 4

−∞
f (x) dx

=
1

42

∫ 4

2

(
1 + x2

)
dx

=
62

126
=

31
63

.

2.4.7 Definition: Compound probability distribution

Consider the sum Y = X1 + X2 + · · · + XN where (i) N is a random number, (ii) Xi, i =

1, 2, 3, ..., N are independent and identically distributed random variables with c.d.f. FX ,21 21 X is a random variable with
mean µX and variance σ2

X .and (iii) each Xi are independent of N.22 By the law of total probability, the compounded
22 N is a random variable with
mean µN and variance σ2

N .distribution of Y is prescribed as follows:

fY(y) = P(Y = y)

=
∞

∑
n=0

P(X1 + X2 + · · ·+ XN = y
∣∣N = n)P(N = n)

=
∞

∑
n=0

f (n)Y P(N = n), (2.37)
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where f (n)Y is the n−fold convolution of fY.23 Next, we will compute the first two moments 23 We have used the notation
fX(x) and p(x), and f (n)X (x)
and p(n)(x) interchangeably
in the case of discrete random
variables. For the continuous
case, we have used fX(x) and
f (n)X (x) exclusively.

of a random variable with compound distribution.

E(Y) =

Law of iterated expectation, eq. 1.15

EN(EY(Y|N))

=
∞

∑
n=0

E(Y|N = n)P(N = n)

=
∞

∑
n=0

nE(X)P(N = n)

= µX

∞

∑
n=0

nP(N = n)

= µXµN . (2.38)

Var(Y) =

Law of total variance, eq. 1.19

EN(Var(Y|N)) + VarN(E(Y|N))

= EN(NVar(X)) + Var(NE(X))

= Var(X)E(N) + (E(X))2Var(N)

= µNσ2
X + µ2

Xσ2
N . (2.39)

The example presented in this section is very similar to the chapter project and should
serve as a building block to solve it.

Example: aggregate claims of an insurance policy

Let the number of claims, N, generated by a portfolio of insurance policies over a
fixed duration has Poisson distribution with rate parameter λ = 3 claims per policy
period. Individual claim amounts Xi (for all values of i = 1, 2..., N) can be 1 or 2 mil-
lion euros with probabilities q = 0.6 and p = 0.4, respectively. The aggregate claim
Y = X1 + X2 + · · · + XN is a compound Poisson distributed random variable. Find
P(Y = k) for k = 0, 1, 2, 3, 4. Also find the expected aggregate claim E(Y).

We begin by noting that Y may take a maximum value equal to 4 as the insurance
portfolio is capped at 4 million euros. This means that the number of claims may be
N = 0, 1, 2, 3, 4. Xi is a Bernoulli random variable with probability of success (claim
= 2 million euros), p = 0.4 and probability of fail (claim = 1 million euros), q = 0.6.
Then, for a certain realization N = n, (n = 1, 2, 3, 4), the sum X1 + · · +Xn is a bino-
mial distributed random variable ∑n

i=1 Xi ∼ bin(n, p). The n− fold p.m.f. are listed
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below.

p(1)(1) = 0.6

p(1)(2) = 0.4

p(2)(2) =

(
2
0

)
(0.4)0(0.6)2 = 0.36

p(2)(3) =

(
2
1

)
(0.4)1(0.6)1 = 0.48

p(2)(4) =

(
2
2

)
(0.4)2(0.6)0 = 0.16

p(3)(3) =

(
3
0

)
(0.4)0(0.6)3 = 0.216

p(3)(4) =

(
3
1

)
(0.4)1(0.6)2 = 0.432

p(3)(5) =

(
3
2

)
(0.4)2(0.6)1 = 0.288

p(3)(6) =

(
3
3

)
(0.4)3(0.6)0 = 0.064

p(4)(4) =

(
4
0

)
(0.4)0(0.6)4 = 0.1296

p(4)(5) =

(
4
1

)
(0.4)1(0.6)3 = 0.3456

p(4)(6) =

(
4
2

)
(0.4)2(0.6)2 = 0.3456

p(4)(7) =

(
4
3

)
(0.4)3(0.6)1 = 0.1536

p(4)(8) =

(
4
4

)
(0.4)4(0.6)0 = 0.0256

In order to find the p.m.f., we simply scale the n− fold p.m.f. by the Poisson dis-
tributed probability weights with λ = 3.

(i)

P(Y = 0) = e−λ = 0.0498

P(Y = 1) = 0.6λe−λ = 0.0896

P(Y = 2) = 0.4λe−λ + 0.36
λ2e−λ

2
= 0.1404

P(Y = 3) = 0.48
λ2e−λ

2
+ 0.216

λ3e−λ

6
= 0.1559

P(Y = 4) = 0.16
λ2e−λ

2
+ 0.432

λ3e−λ

6
+ 0.1296

λ4e−λ

24
= 0.1544

(ii) Without the capping of four million euros on the aggregate claim per policy
period, the insurance company realizes that the expected aggregate claim is
E(Y) = µXµN =

(
2(p) + 1(q)

)
µN = 1.4 × 3 = 4.2 million euros. This estima-

tion may have served as a guide to cap the aggregate claim to approximately 4

million euros.
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2.4.8 Definitions: Joint and marginal probability distributions

Consider a discrete random variable X with distribution FX and another independent dis-
crete random variable Y with distribution FY. Further, let X and Y be defined on the same
sample space. The collection of points (xi, yj), i, j = 1, 2, 3, ... that prescribes the joint event
{X = xi, Y = yj} forms an event space with probabilities, known as joint probability mass
function, written as P(X = xi, Y = yj) = p(xi, yj) ≡ fXY(xi, yj).

The marginal probability mass functions, p(xi) ≡ fX(xi) and p(yj) ≡ fY(yj) can be computed
by integrating out the complementary dimension.24 Therefore, 24 X and Y may be regarded

as complementary to each other
in the joint event space.

p(xi) ≡ fX(xi) = ∑
yj

P(X = xi, Y = yj) ≡ fXY(xi, yj),

and

p(yj) ≡ fY(yj) = ∑
xi

P(X = xi, Y = yj) ≡ fXY(xi, yj). (2.40)

Obviously, the unitary axiom of probability ensures that ∑
yj

∑
xi

fXY(xi, yj) = 1. It is important

to note here that if fXY(x, y) = fX(x) fY(y), then the random variables X and Y are indepen-
dent of each other (cf. section 1.4.5 for the definition of independent events).25 25 Further, it can be shown

that if X and Y are indepen-
dent random variables, then
E(XY) = E(X)E(Y).

Example: Joint distribution of two discrete random variables

The joint distribution of two random variables X and Y is tabulated below.

Y = 1 Y = 2 Y = 3 Y = 4 PX(x) = P{X = x}

X = 1
4

36
3

36
2

36
1

36

X = 2
1

36
3

36
3

36
2

36

X = 3
5

36
1

36
1

36
1

36

X = 4
1

36
2

36
1

36
5

36

P{Y = y} ∑
x

∑
y

P{X = x, Y = y} =?

Compute the following.

(i) the marginal distributions (marginal p.m.f.) of X and Y.
(ii) P{X ≤ 3, 2 ≤ Y < 4}.
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Solution:

(i)

Y = 1 Y = 2 Y = 3 Y = 4 PX(x) = P{X = x}

X = 1
4
36

3
36

2
36

1
36

10
36

X = 2
1
36

3
36

3
36

2
36

9
36

X = 3
5
36

1
36

1
36

1
36

8
36

X = 4
1
36

2
36

1
36

5
36

9
36

P{Y = y} 11
36

9
36

7
36

9
36 ∑

x
∑
y

P{X = x, Y = y} =?

(ii)

P{X ≤ 3, 2 ≤ Y < 4} = P{X ≤ 3, 2 ≤ Y ≤ 3}
= P{1 ≤ X ≤ 3, 2 ≤ Y ≤ 3}

=
x=3,y=3

∑
x=1,y=2

P{X = x, Y = y}

=
3

∑
y=2

P{X = 1, Y = y}+
3

∑
y=2

P{X = 2, Y = y}+
3

∑
y=2

P{X = 3, Y = y}

=

(
3

36
+

2
36

)
+

(
3

36
+

3
36

)
+

(
1

36
+

1
36

)
=

5
36

+
6

36
+

2
36

.

P{X ≤ 3, 2 ≤ Y < 4} = 13
36

.

Example: Joint distribution of two continuous random variables

The joint distribution of two continuous random variables X and Y is given by:

f (x, y) =

{
e−(x+y), 0 < x < ∞, 0 < y < ∞

0, otherwise.

Compute the following.

(i) the marginal distribution (marginal p.d.f.) of X and Y.
(ii) P{X ≤ ln 8, ln 2 ≤ Y ≤ ln 4}
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Solution:
(i)

fX(x) =
∞

∑
y=−∞

f (x, y)

=
∫ ∞

y=0
e−(x+y) dy

= e−x
∫ ∞

y=0
e−y dy

= e−x ×
(

e−y

−1

)∞

0

= e−x (0− 1)
−1

fX(x) = e−x, 0 < x < ∞.

Similarly,
fY(y) = e−y, 0 < y < ∞.

(ii)

P{0 < X ≤ ln 8, ln 2 ≤ Y ≤ ln 4} =
∫ 4e

0

(∫ 3e

e
f (x, y) dy

)
dx

=
∫ 4e

0

(∫ 3e

e
e−(x+y) dy

)
dx

=
∫ 4e

0
e−x

(∫ 3e

e
e−y dy

)
dx

=

(∫ 3e

e
e−y dy

)(∫ 4e

0
e−x dx

)
=

(
e−y

−1

)ln 4

ln 2
×
(

e−x

−1

)ln 8

0

=
(

e− ln 4 − e− ln 2
)
×
(

e− ln 8 − e−0
)

=
(

eln 1
4 − eln 1

2

)
×
(

eln 1
8 − 1

)
=

(
1
4
− 1

2

)
×
(

1
8
− 1
)

=

(
−1

4

)
×
(
−7

8

)
.

P{X ≤ ln 8, ln 2 ≤ Y ≤ ln 4} = 7
32

.

Example: Typographical errors in a manuscript

Consider a bouquet of manuscripts each of which are three pages long. Based on sev-
eral editorial proof checking exercises over many years, it has been observed that typ-
ically authors commit three typographical errors per manuscript of this type. In this
example, we will investigate the distribution of error-free pages in such manuscripts.
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As an illustrative example, we have chosen a more tractable case here, of three errors
distributed across three printed pages. Let us denote a typographical error by the
symbol � and a page as a container in a 3-tuple representation of the aforementioned
manuscript family (i.e., (-/��/�) represents a case when two of the three typographi-
cal errors are found in page 2 and one in page 3 while page 1 is observed to be free of
any errors). The event space is tabulated below.

(���/-/-) (-/���/-) (-/-/���) (��/�/-) (��/-/�)
(�/��/-) (-/��/�) (�/-/��) (-/�/��) (�/�/�)

Let N denote the number of pages that have at least one error. Let Xi denote the num-
ber of errors in the ith page. Let us begin by considering the joint distribution of X1

and N. For each event case, we enlist below the realizations of X1 and N.

i. (���/-/-): X1 = 3, N = 1,

ii. (-/���/-): X1 = 0, N = 1,

iii. (-/-/���): X1 = 0, N = 1,

iv. (��/�/-): X1 = 2, N = 2,

v. (��/-/�): X1 = 2, N = 2,

vi. (�/��/-): X1 = 1, N = 2,

vii. (-/��/�): X1 = 0, N = 2,

viii. (�/-/��): X1 = 1, N = 2,

ix. (-/�/��): X1 = 0, N = 2, and

x. (�/�/�): X1 = 1, N = 3.
Figure 2.29: A day in
the life of a copy edi-
tor who is busy finding
typographical errors
in a manuscript. The
probability distribu-
tion of typographical
errors in manuscripts
is a useful marker for
publishing houses to
allocate resources in the
copy editing process.

The enlisting of the event space above enables us to write the joint probability mass
function fX1 N(x, n) by computing the relative frequency of occurrence. The following
table captures both the joint probability mass function as well as the marginal proba-
bility mass functions (a.k.a. the marginals). The marginals are calculated from the joint
p.m.f. by summing along the rows and the columns respectively.

X1 fN(n)
0 1 2 3

1 2
10 0 0 1

10
3

10
N 2 2

10
2

10
2

10 0 6
10

3 0 1
10 0 0 1

10

fX1(x) 4
10

3
10

2
10

1
10

Likewise, we can calculate the joint p.m.f.s for (X2, N) and (X3, N) followed by their
respective marginals.



86 play of chance and purpose

X2 fN(n)
0 1 2 3

1 2
10 0 0 1

10
3

10
N 2 2

10
2

10
2

10 0 6
10

3 0 1
10 0 0 1

10

fX2(x) 4
10

3
10

2
10

1
10

X3 fN(n)
0 1 2 3

1 2
10 0 0 1

10
3

10
N 2 2

10
2

10
2

10 0 6
10

3 0 1
10 0 0 1

10

fX3(x) 4
10

3
10

2
10

1
10

Clearly, all the joint distribution functions for (X1, N), (X2, N), and (X3, N) are identi-
cal because it is natural to expect that the occurrences of the typographical errors are
page-agnostic. Further, in each case, the marginals fX1 , fX2 , and fX3 are also identical.
Additionally, we can easily check by inspection that fX1 N(0, 1) ̸= fX1(0) fN(1). In fact,
fXi N(xi, nj) ̸= fXi (xi) fN(nj) for all i = 1, 2, 3 and N = 1, 2, 3. This means that the
random variables Xi and N are not independent. Lastly, the marginal p.m.f. fN(n) im-
plicitly describes the probability distribution of error-free pages in manuscripts under
consideration here.

The notion of joint and marginal distribution holds true for continuous probability distri-
butions as well. Two continuous random variables X and Y have a joint p.d.f. fXY(x, y) if for
any subset A of R2, we have

P
(
(X, Y) ∈ A

)
=
∫ ∫

A
fXY(x, y)dxdy, (2.41)

where fXY(x, y) is a non-negative function (because it represents a probability measure) and
normalizes to unit magnitude upon integration, i.e.

∫ ∫
S fXY(x, y)dxdy = 1, where S is an

appropriate sample set. The marginal p.d.f.s are also defined akin to the discrete counterpart
as follows:

fX(x) =
∫

y
fXY(x, y)dy, fY(y) =

∫
x

fXY(x, y)dx. (2.42)

Further, the condition for independence of the random variables X and Y is fXY(x, y) =

fX(x) fY(y) for all (x, y) ∈ S.

Example: revisiting the problem of total system failure of an aircraft’s power plant

Let us reconsider the problem we investigated earlier about estimating the risk of a
total system failure after 100 flying hours as explained in the example of an expo-
nential distribution (also cf. the example alongside Figure 2.27).26 The lifetime of
each of the two engines (the main power unit (MPU) and the auxiliary power unit
(APU)) is represented by two different random variables X and Z with joint p.d.f.
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fXZ(x, z) = µ2e−µxe−µz, for x, z > 0 and µ = 1
E(X)

= 1
E(Z) = 1

500 . Let Y = X + Z be the
time until the total system failure. What is the p.d.f. of the time until the first engine
failure and the total system failure? Further, what is the risk (in terms of a probability
measure) of a total system failure after 100 flying hours have elapsed?

The p.d.f. of the time until the MPU failure and the time until the APU failure are the
respective marginal p.d.f.s fX(x)and fZ(z).

fX(x) =
∫ ∞

0
fXZ(x, z)dz = µe−µx, for x > 0. (2.43)

Likewise, fZ(z) = µe−µz, for z > 0. (2.44)

The risk of a total system failure after 100 flying hours is estimated by calculating the
right tail distribution

P(Y > 100) = 1− P(Y ≤ 100)

= 1− P(X + Z ≤ 100)

=

conditioning & law of total probability

1−
∫ 100

0
P
(

X ≤ 100− Z
∣∣∣∣Z = z

)
fZ(z)dz

= 1−
∫ 100

0
P
(

X ≤ 100− z
)

fZ(z)dz

= 1−
∫ 100

0

(∫ 100−z

0
fX(x)dx

)
fZ(z)dz

= 0.9825. (2.45)

There is a 98.25% risk of a total system failure after 100 flying hours.

26 In this case, we will not consider an "engine re-start" option. The situation of failure of both power plants
during flight would result in total system failure without an opportunity to salvage the crisis.

The concept of joint and marginal distributions (for both discrete and continuous cases)
can be extended in an analogous manner for more than two random variables.

Example: application of joint and marginal probability distributions

Let X and Y are independent random variables with distribution geom1(p). Answer
the following questions:

1. What is the probability distribution of min(X, Y)?

2. Compute P(Y ≥ X).

3. What is the probability distribution of X + Y?

4. Compute P(Y = y
∣∣X + Y = z) for z ≥ 2 and y = 1, 2, ..., z− 1.

The calculations to solve the above questions are shown here below.
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1. Let Z = min(X, Y). If min(X, Y) > z, then X > z and Y > z. Therefore

P(Z > z) = P(min(X, Y) > z) = P(X > z, Y > z)

=

X and Y are independent

P(X > z)P(Y > z)

=

cf. eq. 2.21

(1− p)z(1− p)z

=
(
(1− p)2)z. (2.46)

This implies that Z = min(X, Y) ∼ geom1

(
1− (1− p)2

)
.

2. Consider the countable events {X = 1} ∩ {Y ≥ X}, {X = 2} ∩ {Y ≥ X}, {X =

3} ∩ {Y ≥ X}, ... that partition the sample space of geometrically distributed ran-
dom variables X and Y where Y ≥ X.

P(Y ≥ X) = P
( ∞⋃

x=1

(
{X = x} ∩ {Y ≥ X}

))
=

probabilities are additive for disjoint events

∞

∑
x=1

P
(
{X = x} ∩ {Y ≥ x}

)

=

independence of X and Y

P(X = x)P(Y ≥ x)

=
∞

∑
x=1

p(1− p)x−1(1− p)x−1

=
1

2− p
. (2.47)

3. The distribution for X + Y is prescribed by a convolution sum.

P(X + Y = z) =
z−1

∑
x=1

P(X = x, X + Y = z)

=
z−1

∑
x=1

P(X = x, Y = z− x)

=
z−1

∑
x=1

P(X = x)P(Y = z− x)

= (z− 1)p2(1− p)z−2.

4. We use the definition of conditional probability in the following calculation.

P(Y = y
∣∣X + Y = z) =

P(Y = y, X + Y = z)
P(X + Y = z)

=
P(X = z− y)P(Y = y)

P(X + Y = z)

=
1

z− 1
. (2.48)
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Example: Law of total probability for continuous random variables

Here we will consider an example which has a direct practical application in modeling
queues which are discussed in detail later in chapter 4. Consider two independent
random variables X and Y which follow an exponential distribution with rate parame-
ters λ and µ. We are interested in computing P(X < Y).

Since X ∼ exp(λ) and Y ∼ exp(µ), fX(x) = λe−λx and fY(y) = λe−λy. We will use the
law of total probability to compute P(X < Y) as follows.

P(X < Y) =
∫ ∞

0
P(X < Y

∣∣Y = y) fY(y)dy

=
∫ ∞

0
P(X < y) fY(y)dy

=
∫ ∞

0

∫ y

0
fX(x)dx fY(y)dy

=
∫ ∞

0

∫ y

0
fX(x) fY(y)dxdy

= λµ
∫ ∞

0

∫ y

0
e−λxe−λydxdy

= 1− µ

λ + µ

=
λ

λ + µ
. (2.49)

2.5 Chapter project: Predicting insurance claim aggregates during a policy period

2.5.1 Interlude: Computing the moments of the compound Poisson distribution and estimat-
ing aggregate insurance claims by clients by theoretical analysis

Consider Yj = X1 + X2 + · · +XNj is the aggregate of a random number of claims Nj per
quarter (policy period) where Nj ∼ Poisson(λj), j = 1, 2, 3, 4 (corresponding to each of four
quarters) and Xi ∼ Bernoulli([1, 2], p2) are individual claims with probability p1 = 2

3 and
p2 = 1

3 corresponding to claims denominations of $ 100, 000 and $ 200, 000 respectively.
Further, λ1 = 2, λ2 = 3, λ3 = 1, λ4 = 3. Z = ∑4

j=1 Yj is the yearly total of all claims made
to the firm. Answer the following questions.

1. Identify the distribution of Yj.

2. Compute E(Z) and Var(Z).

3. Compute P(Y2 > 5) and compute P(Y3 > 5) analytically (without a computer simula-
tion). Subsequently, comment on the discrepancy between the two results (if any).

Figure 2.30: What are
the risks in the insur-
ance business?

Note: A word of caution is in order here. While Xi is indeed a binary random variable,
in order for your calculations to work out in accordance with a Bernoulli random process,
you may have to carry forth a simple transformation of the observables [1, 2] → [0, 1]. This
will be especially necessary while computing the statistical moments such as E(Z)!
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2.6 Transformation of a random variable

Consider that we know the distribution of a random variable X. This variable can undergo a
transformation g(X) for any realizable value of X and thereby define a new random variable
under the law g(·). Let us denote the new random variable Y. What can we say about the
probability distribution of Y? Let us attempt to answer this question with an illustrative
example.

Example: Distribution law of a square-law detector

Consider a continuous random variable X with c.d.f. FX(x). X undergoes a transfor-
mation under a square-law Y = g(X) = X2. Compute the p.d.f. of Y.

Solution: The event
{

Y ≤ y
}

is equivalent to
{
−√y ≤ X ≤ √y

}
=

{
−√y <

X ≤ √
y
}
∪
{

X = −√y
}

where the union is between disjoint events and P(X =

−√y) = 0 because Y is defined by a continuous transformation g(·) of a continuous
random variable X. Consequently,

FY(y) = FX(
√

y)− FX(−
√

y) + P(X = −√y) = FX(
√

y)− FX(−
√

y) + 0. (2.50)

Since the transformation is governed by a square-law, we are only concerned with y >

0 and therefore,

fY(y) =
d

dy
FY(y)

=
1

2
√

y

(
fX(
√

y) + fX(−
√

y)
)

. (2.51)

Thus, for instance, if X ∼ N(0, 1), then the p.d.f. of Y is

fY(y) =
1√
2πy

e−
y
2 1y≥0. (2.52)

We can obtain a general formula for computing the p.d.f. of a random variable under a
continuous transformation. Let X be a continuous random variable with p.d.f. fX(x) and the
differentiable function g(x) of the real variable x that defines the transformation. The p.d.f.
of Y is given by

fY(y) =
n

∑
i=1

fX(xi)∣∣g′(xi)
∣∣ , g′(xi) ̸= 0, (2.53)

where g′(x) ≡ dy
dx and xi, i = 1, 2, ..., n are the n roots of the equation y− g(x) = 0.

In a latter chapter of this book on multivariate statistics, in section 7.3, we will obtain a
further generalization of this formula for multi-variate random variables (eg., X and Y are
jointly transformed by two laws g(·, ·) and h(·, ·)) by inverting the determinant of a certain
Jacobian matrix.
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2.7 Moment generating functions and their applications

The moment generating function (m.g.f.) of a random variable X is denoted by mX(t) and is
defined for all t, in a neighborhood of zero, as follows.

mX(t) := E
(
etX) =

∑
x

etxP(X = x), if X is a discrete r.v.∫
x etx fX(x)dx, if X is a continuous r.v.

(2.54)

The following four results underscore the utility of m.g.f. to find probability distributions
of sum of random variables and also to find the higher moments of random variables.

1. If X1, X2, ..., Xn are n independent random variables, and Y := X1 + X2 + · · +Xn,
then

mY(t) = mX1(t)mX2(t) · · ·mXn(t) =
n

∏
i=1

mXi (t). (2.55)

2. If X and Y are two random variables with finite m.g.f. mX(t) and mY(t) for all t,
then X and Y have the same probability distributions.

3. The joint m.g.f. of X and Y is

mX,Y(s, t) = E
(
esX+tY). (2.56)

The following always holds.

If X and Y are independent ⇐⇒ mX,Y(s, t) = mX(s)mY(t), ∀s, t. (2.57)

4. Computing higher order moments from m.g.f.: For all n ≥ 0, E
(
Xn) = m(n)

X (0).27

27 Here m(n)
X (0) is the nth derivative of the m.g.f. of X evaluated at t = 0. Figure 2.31: Blue cars

enter the highway lane
at rate λ1 and red cars
enter the lane at λ2. The
lanes merge after some-
time whence the rate
of flow of cars in the
narrow lane is λ1 + λ2.

The framework presented above that allows us to compute all the statistical moments
E(Xm) is founded on the fact that the exponential function has an infinite radius of conver-
gence. In other words,

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · (2.58)

converges for all x. A closer inspection allows us to recover E(Xn) for any n by substitut-
ing tX for x in eq. 2.58 and calculating the appropriate derivative28 of the expected value

28 The derivative is computed
with respect to t.E(etX) = 1 + tE(X) + t2E(X2)

2! + · · · evaluated at t = 0.
Let us consider the following example in order to fully appreciate the utilitarian nature

of the above results in the context of: (i) identifying the distribution of sums of random
variables, and (ii) computing all the moments of the random variables.
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Example: Sum of two Poisson random variable is another Poisson random variable

Consider that X and Y are independent Poisson random variables with rate parame-
ters λ1 and λ2 respectively. What is the probability distribution of X + Y?

First, let us compute the m.g.f. of X.

mX(t) = E
(
etX) =

∞

∑
k=0

etke−λ1 λk
1

k!

= e−λ1
∞

∑
k=0

(λ1et)k

k!

=

Taylor series of exponential function

e−λ1 eλ1et

= eλ1(et−1). (2.59)

Similarly, mY(t) = eλ2(et−1).
Now, by using the result of equation 2.55, we obtain mX+Y(t) = mX(t)mY(t) =

eλ1(et−1)eλ2(et−1) which is the m.g.f. of a Poisson random variable with rate parameter
λ1 + λ2. Therefore, X + Y ∼ Poisson(λ1 + λ2).

Example: computing moments of random variables

Consider a r.v. X with p.d.f. fX(x) = ex

(1+ex)2 for −∞ < x < ∞. Use the m.g.f. to find
E(X) and Var(X).

The m.g.f. mX(t) =
∫ ∞
−∞ etx ex

(1+ex)2 dx =
∫ 1

0

(
1−u

u

)t

du for −1 < t < 1. Here we have

used the transformation u = 1
1+ex . Now, recall that d

dt at = eat log a where at = et log a.

Using this result, we have m′X(t) =
∫ 1

0 log( 1−u
u )( 1−u

u )tdu. Thus m′X(0) =
∫ 1

0

(
log(1 −

u) − log u
)

du = 0. Likewise, m′′X(0) = π2

3 . This entails that E(X) = 0 and Var(X) =

E(X2)− (E(X))2 = π2

3 .

Example: Moment generating function to find statistical moments of a geometric ran-
dom variable

Let X ∼ geom1(p). Find the momemt generating function of X and use it to find the
E(X) and Var(X).
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Solution:
Let q = 1− p. The p.d.f. of X is:

p(x) = qx−1 p, x = 1, 2, 3, . . .

By definition, m.g.f. is as follows:

mX(t) = E
(
etx)

=
∞

∑
x=0

etxqx−1 p

= pet
∞

∑
x=0

(et)
x−1qx−1

= pet
∞

∑
x=0

(et)
x−1

= pet
(

1
1− qet

)
mX(t) =

pet

1− qet =
p

e−t − q
.

We compute the first and second derivatives of the m.g.f.:

⇒ m(1)
X (t) =

pe−t

(e−t − q)2 .

⇒ m(2)
X (t) = pe−t 2e−t

(e−t − q)3 − pe−t 1
(e−t − q)2

=
pe−t

(e−t − q)2

(
2e−t

e−t − q
− 1
)

=
pe−t

(e−t − q)2

(
e−t + q
e−t − q

)
m(2)

X (t) =
pe−t(e−t + q)
(e−t − q)3 .

Recall that,

E(X) = m(1)
X (0) =

p
(1− q)2 =

p
p2 =

1
p

E(X2) = m(2)
X (0)

=
p(1 + q)
(1− q)3 =

p(1 + q)
p3

E(X2) =
1 + q

p2 .

Var(x) = E
(

X2
)
− (E(X))2

=
1 + q

p2 − 1
p2 .

Var(x) =
q
p2 =

1− p
p2 .
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Example: Moment generating function to compute statistical moments of a Poisson
random variable

Let X ∼ Poisson(λ). Find the m.g.f. of X and use it to find the E(X) and Var(X).

Solution:
The p.d.f. of X is:

p(x) =
e−λλx

x!
, x = 0, 1, 2, . . .

By definition, m.g.f. is as follows:

mX(t) = E
(
etx)

=
∞

∑
x=0

etxe−λλx

x!

= e−λ
∞

∑
x=0

(
λet)x

x!

= e−λeλet

mX(t) = eλ(et−1).

We compute the first and second derivatives of m.g.f.:

⇒ m(1)
X (t) = λet

(
eλ(et−1)

)
⇒ m(2)

X (t) =
(
λet)2

(
eλ(et−1)

)
+ λet

(
eλ(et−1)

)
m(2)

X (t) = λet (λet + 1
)

eλ(et−1).

Again, recall that
E(X) = m(1)

X (0) = λ

E(X2) = m(2)
X (0)

= λ(λ + 1)

E(X2) = λ2 + λ.

Var(x) = E
(

X2
)
− (E(X))2

= λ2 + λ− λ2

Var(x) = λ.

2.7.1 Cumulants and their applications

Under some circumstances, it may be more appropriate to consider the logarithm of the
moment generating function. Consequently, we may define a cumulant generating function
(c.g.f.) as follows.

κX(t) := log mX(t), (2.60)

where t lies in the neighborhood of 0.
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The c.g.f. is well defined only when the r.h.s. of eq. 2.60 has a convergent series expan-
sion. Let us write κX(t) as a power series in t and equate it with the logarithm of the power
series of mX(t).

κX(t) = κ1t + κ2
t2

2!
+ · · ·+ κr

tr

r!
+ ·· = log mX(t)

= log
(

1 + E(X)t + E(X2)
t2

2!
+ · ·+E(Xr)

tr

r!
+ · · ·

)
.

(2.61)

Here κr = κ(r)(0) is the coefficient of tr

r! and known as the rth cumulant of X. Now, we may
choose t appropriately small in order to write a Taylor series expansion for the logarithm
term on the r.h.s. of the above equation.29 The like powers of t from the l.h.s. and the r.h.s. 29 log(1 + x) = x− x2

2 + x3

3 · ·
is a Taylor series expansion
that converges for all |x| ≤ 1.

may then be compared to deduce the following relationships between the moments and the
cumulants of X.

E(X) = µ = κ1

Var(X) = µ2 = κ2

µ3 = κ3 where µ3 := E
(
(X− µ)3)

µ4 = κ4 + 3κ2
2 where µ4 := E

(
(X− µ)4) (2.62)

and so on.
Let S = X + Y be the sum of two independent random variables. The c.g.f. κS(t) of the

sum S is given by
κS(t) = κX(t) + κY(t). (2.63)

The above result may be extended to sum of n independent random variables. Further, in

case of a multi-variate random vector variable X =


X(1)

X(2)

·
·

X(k)

, the c.g.f. of X, κX(¸) is defined

as follows:
κX(ξ) = 1 + ∑

i
ξiκi + ∑

i,j
ξiξ j

κij

2!
+ ∑

i,j,k
ξiξ jξk

κijk

3!
+ · · ·, (2.64)

where κi := E(X(i)), κij := E(X(i)X(j)), κijk := E(X(i)X(j)X(k)) and so on, ξ :=
(
ξ1 ξ2 · ··

)T .
It may be worth noting that if X(i) and X(j) are independent, then κi, ..., i︸ ︷︷ ︸

r

,j, ..., j︸ ︷︷ ︸
s

= 0, ∀r, s ≥ 1.

The converse is not necessarily true.
We will close this section by simply stating a few applications of cumulants: the skewness

of a distribution is given by κ3
κ3/2

2
and the kurtosis is given by κ4

κ2
2
. Advanced topics and appli-

cations such as conditional moments and cumulants may be referred to by interested readers
in the text by Thomas A. Severini (cf. pg. 124).30 30 Elements of Distribution

Theory by Thomas A. Severini,
Cambridge University Press
(first edition), 2005.2.7.2 Probability generating functions

The discussion in the preceding section on moment generating functions underscores the
utility of expressing the functions of random variables as power series to compute statistical
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moments. This approach may be generalized to extract probabilities of events of interest to
us by computing derivatives of the probability generating function (p.g.f.) of the random
variable in question that is written as a power series as shown below.

gX(t) := E
(
tX) = ∞

∑
k=0

ϕktk, (2.65)

where ϕk := P(X = k).

An immediate consequence of the definition above, and which is aligned with a similar
strategy elucidated in the previous section on m.g.f., is the following:

ϕk =
1
k!

g(k)X (0), (2.66)

where g(k)X (0) is the kth derivative of the p.g.f. gX(t) evaluated at t = 0. It is important to
note here that the framework for p.g.f. is relevant to the case of discrete random variables
because of the form of the definition of gX(t) given above.

Figure 2.32: Several
realizations of a one-
dimensional random
walk all starting from
the state zero. The plots
display locations/states
on the vertical axis and
the time steps on the
horizontal axis. A quick
inspection will reveal
that such random walks
may make several pas-
sages through a given
state during the course
of its evolution. A ques-
tion of interest may be
to estimate the aver-
age number of steps
made by such a random
walker before it transi-
tions through a given
state for the first time
(first passage through a
state).

Example: finding the probability distribution of X using the p.g.f. of X.

Consider a discrete random variable X with the p.g.f. gX(t) = t
4 (1 + 3t). Find the

probability distribution of X.

We will begin by computing gX(0), and subsequently, all higher derivatives of the
form g(k)X (0) and thereby enlist the p.m.f. of X.

gX(t) =
t
4
(1 + 3t) =⇒ ϕ0 = gX(0) = 0,

g′X(t) =
1
4
+

6
4

t =⇒ ϕ1 = g′X(0) =
1
4

,

g′′X(t) =
6
4

=⇒ ϕ2 =
1
2!

g′′X(0) =
3
4

,

g(n)X (t) = 0, ∀n > 2 =⇒ ϕn = 0, ∀n > 2.

Therefore, the probability distribution of X can be prescribed as follows.

X =

1 with probability 1
4 ,

2 with probability 3
4 .

(2.67)

In the next example given here, we will consider a one-dimensional random walk of the
type discussed in the chapter project of chapter 2 where we had a squirrel making a jump
to the left or right at every instant with a probability p and q = 1− p, respectively. Such a
random walk spans the space of integers I = {· · ·,−2,−1, 0, 1, 2, · · ·}. We consider a case
when the random walk starts at zero S0 = 0 where Sn is the location (state) of the random
walker at the end of n time steps. An interesting question in this regard would be to estimate
the expected number of steps taken by the random walker before transitioning through
location (state) +1 for the first time. This is discussed in the following example where we
make use of probability generating functions.
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Example: first passage through a certain state by a 1D random walker - an application
of probability generating function

Recall the chapter project from chapter 2 where we encountered a random walker (the
squirrel) on a one-dimensional island who makes an independent choice to jump ei-
ther to the left or to the right at every instant of time. Now consider a similar situation
wherein a random walker takes a step to the right with probability p and a step to the
left with probability q at each time step. Clearly p + q = 1. What is the expected time
(in terms of number of steps) before the random walker makes a passage through
+1 for the first time? Here we will assume that the random walk begins at the origin
(labelled 0).

Let us begin by considering a Bernoulli random variable as follows.

Xi =

+1 when the ith step is to the right

−1 when the ith step is to the left,
(2.68)

where i = 1, 2, · · ·. We may regard a move to the right as being equivalent to the
occurrence of a head (labelled as H) upon tossing a fair coin and a move to the left
as being equivalent to the occurrence of a tail (labelled as T). We may now define the
states of the random walk thusly.

Sn = X1 + X2 + X3 + · · ·+ Xn (2.69)

where Sn is the state (location) of the random walker after n time steps. S0 = 0.
First passage: We may now define a random variable N such that SN = 1, N > 0 but
Sk ̸= 1 for any k < N. This defines the event Pn of the first passage through the state
1 in N = n time steps. Further, ϕn := P(N = n) is the probability of the event Pn.

Since we are interested in utilizing the p.g.f. of a random variable that is written as a
power series in t with terms like tn, it makes sense to compute E(tN).

E(tN) =
∞

∑
n=0

tnP(N = n)

=
∞

∑
n=0

tnϕn

= gN(t). (2.70)

Subsequently, we may proceed with the computation by conditioning upon the dis-
joint events corresponding to X1 = 1 and X1 = −1. The law of total expectation
prescribes

gN(t) := E(tN) = E(tN |X1 = 1)P(X1 = 1) + E(tN |X1 = −1)P(X1 = −1)

=

SN=1 = 1 for the first term

tp + E(tN |X1 = −1)q. (2.71)

In order to evaluate the second term on the r.h.s. of eq. 2.71, we may now consider a
two stage process:
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i. N1 time steps to go from state −1 to 0, and

ii. N2 additional time steps to go from state 0 to the target state 1.

Consequently, N = 1 + N1 + N2 where 1 accounts for the very first step in transition-
ing from S0 = 0 to S1 = −1. N1 and N2 are independent random variables that have
the same distribution as N and are independent of N.

E(tN |X1 = −1) = E(t1+N1+N2 |X1 = −1)

= E(ttN1 tN2 |X1 = −1)

= tE(tN1 tN2 |X1 = −1)

=

N1 and N2 are independent

tE(tN1 |X1 = −1)E(tN2 |X1 = −1)

=

N1, N2 are independent of X1

tE(tN1)E(tN2)

=

N1, N2 have the same distribution as N

tg2
N(t). (2.72)

Using eqs. 2.71 and 2.72, we obtain the quadratic relation

gN(t) = pt + qg2
N(t) (2.73)

which has a solution gN(t) =
1−
√

1−4pqt2

2qt consistent with gN(0) = 0.
Now, since we can choose t to be as close to zero as we desire and p, q < 1, it is safe to
assume that 4pqt2 << 1. Thence, Taylor’s expansion around x := 4pqt2 = 0 gives us

the following expression
√

1− x = 1 +
∞
∑

n=1

(2n−3)!!
2nn! xn where gN(t) =

∞
∑

n=0
tnϕn, ϕ2n =

0, ϕ2n−1 = (2n−3)!!
n! 2n−1 pnqn−1.31

From this we may deduce the probability of first passage through +1 in (2n − 1) time
steps or less is p2n−1 = ϕ1 + ϕ3 + ϕ5 + · · · + ϕ2n−1. Likewise, the probability of first
passage (ever) through +1 by the random walker is

∞

∑
n=0

ϕn ≡ gN(1) =
(

1−
√

1− 4pqt2

2qt

)
t=1

=
1− |p− q|

2q
=


p
q if p < q,

1 if p ≥ q.

Here we have used the fact that |x| =

−x if x < 0,

+x if x ≥ 0,
and

√
1− 4xy = (x − y)2.

Consequently, if p ≥ q, we are certain that the random walker will make a passage
through +1 but if p < q, then there is a probability p

q that the walker will make a pas-
sage through +1.
Now, if indeed p ≥ q, what is the expected waiting time until the first passage through
+1, i.e. what is E(N)? By definition, we know that

E(N) =
∞

∑
n=1

nP(N = n) =
∞

∑
n=1

nϕn = g′N(1).
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g′N(1) =

(
g′N(t)

)
t=1

= 1
p−q for p > q but ∞ for p = q. Thus, if p = q = 1

2 , then

E(N) = ∞ even though we are certain to make a passage through +1.

31 The double factorial notation represents the following relation: (2n + 1)!! = (2n + 1)(2n− 1) · · · 5 · 3 · 1
and (−1)!! = 1.

2.8 Asymptotic results

We will simply state and present to the readers how to apply the important results of this
section. Proofs of some these theorems are omitted here in this introductory text. Interested
readers may refer to some excellent books mentioned in the chapter bibliography to study
the proofs.

First a few clarifications are in order on the issue of integrability. If the r.v. X is integrable,
i.e. X ∈ L1, then E(|X|) < ∞. If the r.v. X is square-integrable, i.e. X ∈ L2, then E(X2) < ∞.

2.8.1 Markov’s inequality

For a non-negative random variable X ∈ L1, and a constant c > 0, we have a follow-
ing upper bound for the probability tail.

P(X ≥ c) ≤ E(X)

c
. (2.74)

2.8.2 Chebyshev’s inequality

If E(X2) < ∞, k ∈ R+ and E(X) = µ, Var(X) = σ2, then the following are true.

P(|X| ≥ k) ≤ E(X2)

k2 , (2.75)

P(|X− µ| ≥ k) ≤ σ2

k2 . (2.76)

2.8.3 Law of large numbers

There are two important theorems on the law of large numbers which forms the basis of
many widely used statistical algorithms like the Monte Carlo methods.

• Weak Law of Large Numbers (WLLN): Let X1, X2, ..., Xn be independent and iden-
tically distributed (i.i.d.) random variables in L2 with mean µ and variance σ2.
Sn = X1 + X2 + · · ·+ Xn. Then for every fixed ϵ > 0,

P
(∣∣∣∣Sn

n
− µ

∣∣∣∣ > ϵ

)
→ 0, as n→ ∞. (2.77)

The WLLN is a direct consequence of the Chebyshev’s inequality. This may be easily
checked thusly. Sn

n = X1+··+Xn is also a random variable whose variance is as follows.
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Var
( Sn

n
)

= 1
n2 Var(X1 + · · +Xn) = nσ2

n2 because all the covariance terms of the form
Cov(Xi, Xj), i ̸= j are zero. This is due to the independence of the

{
Xi
}

s. Now as n → ∞,

Var
( Sn

n
)
→ 0 and the WLLN follows.

• Strong Law of Large Numbers (SLLN): Let X1, X2, ..., Xn are i.i.d. random vari-
ables in L1 with mean µ. Sn = X1 + X2 + · · ·+ Xn. Then,

P
(

Sn

n
→ µ

)
= 1. (2.78)

Here it is assumed that the set ω s.t. Sn(ω)
n → µ is an event.

We now illustrate an application of the law of large numbers which will be our first intro-
duction to Monte-Carlo family of simulations.

Figure 2.33: A street
magician performing
tricks to earn money for
a bottle of beer. What
are his odds to make
enough money?

Example: will the magician collect enough for his evening beer?

A street artist performs a magic show in the main street of Mingletown for three
hours. He hopes to earn enough for a bottle of beer which costs INR 350. Throughout
the three hours, people give him coins at random. So we will assume that the coins ar-
rive in his bag according to a Poisson distribution. The amount of money each person
gives is random with the following distribution.

P(INR 5) = 0.4

P(INR 10) = 0.4

P(INR 20) = 0.2

On average, 5 people per hour give money to the street artist. This implies that the
Poisson process has intensity λ = 5. What is the probability the artist accumulates
enough money to get his beer? In other words, what is l̂ = P(X3 ≥ 350) where Xi is
the money accumulated after i = 1, 2, 3 hours?

We can estimate this easily using the Monte Carlo simulation which makes use of the

strong law of large numbers. The estimate l̂ = 1
N

N
∑

j=1
Zj where Zj is a Bernoulli ran-

dom variable with output 0 or 1 depending on whether the ith iteration (out of many
thousand iterations) of the Monte Carlo method resulted in the artist bagging enough
money for the beer. The law of large number implies that l̂ → E(Zj) as n → ∞ almost
surely. Succinctly, l̂ = P(X3 ≥ 350) = E

(
IX3≥350

)
where we have used the indica-

tor random variable and a useful result from sec. 1.8.1. The computational estimate
of E

(
IX3≥350

)
is basically an ensemble averaging process accomplished over many

thousand Monte Carlo iterations as is illustrated in the code below.

% Monte Carlo Simulation of Compound Poisson process

t = 3; lambda = 5; N = 10^6;

beer = zeros(N,1); beer_price = 350;
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for i = 1:N

n = poissrnd(lambda * t);

if n~=0

coins = zeros(n,1);

for j = 1:n

U = rand;

coins(j) = (U <= 2/5)*5 + ...

(U > 2/5 && U <= 4/5)*10 + (U > 4/5)*20;

end

end

beer(i) = (sum(coins) >= beer_price);

end

l_hat = mean(beer) % l_hat = P(X3 >= beer_price)

relErr_hat = std(beer) / (l_hat * sqrt(N))

% relative error of l_hat by crude Monte Carlo simulation

The estimate l_hat = 8.1000e-05 entails that there is very little chance that the artist
will accumulate enough money to buy a bottle of beer. His chance of making enough
money for beer could be enhanced if the chance of receiving the largest denomination
of money, i.e. INR 20, is increased at the expense of the lower denominations and/or
if the frequency at which the people offered money (i.e. the value of λ) increased
and/or if he performed his show for a longer duration.

2.8.4 Central limit theorem (CLT)

Consider a random sample of size n denoted by X1, X2, ..., Xn which is drawn from a popu-
lation of mean µ (i.e. E(Xi) = µ, i = 1, 2, ..., n) and variance σ2 (i.e. Var(Xi) = σ2). Then the

asymptotic distribution of Z = X−µ

σ/
√

n as n→ ∞ is the standard normal distribution N(0, 1).

We will revisit the central limit theorem in a subsequent chapter on Statistical Experiments.
Here we will simply use this to arrive at the following to asymptotic results.

2.8.5 Normal approximation to the Binomial distribution (DeMoivre-Laplace limit theorem)

Let X ∼ Bin(n, p). Then X−np√
np(1−p)

→ N(0, 1) as n→ ∞.

A special case of the central limit theorem when applied to investigate the distribution
of the sum of Bernoulli random variables is known as the DeMoivre-Laplace limit theorem
after Abraham de Moivre.32 32 Abraham de Moivre. The

Doctrine of Chances. Illus-
trated edition. Cambridge
University Press, 2013. isbn:
978-1108061803
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Let Sn := X1 + X2 + · · · + Xn where Xi is a Bernoulli random variable with success proba-
bility p for all i = 1, 2, ..., n. Consequently, Sn ∼ Bin(n, p). Then

lim
n→∞

P
(

Sn − np√
np(1− p)

< z
)
= Φ(z), (2.79)

where Φ(z) := P(Z < z) and Z ∼ N(0, 1). Equivalently,

lim
n→∞

P
(

a <
Sn − np√
np(1− p)

< b
)
= Φ(b)−Φ(a) = P(a ≤ Z ≤ b). (2.80)

Figure 2.34: How well
did I learn from Prof.
Bean?

Example: Approval rating of a teacher

A survey is conducted among 100 students in a class to verify if a teacher is per-
forming well. Since the teacher under review is an average student, it turns out that
students are equally likely to approve or disapprove of his teaching style. What is
the probability that exactly (i) 50 students, and (ii) 75 students approve the teacher’s
style?

Let us first use the Binomial distribution to compute this probability. Here n = 100
and p = 1

2 . Let Y be the number of students who approve the teacher’s style. Y ∼
Bin(100, 1

2 ). Therefore,

P(Y = 50) = P(Y ≤ 50)− P(Y ≤ 49)

= 0.0796. (2.81)

The above calculation is accomplished by using the following Matlab command

>> binocdf(50,100,0.5) - binocdf(49,100,0.5)

Likewise,

P(Y = 75) = P(Y ≤ 75)− P(Y ≤ 74)

= 1.9131× 10−7. (2.82)

Now, let us attempt to estimate the same quantity by using the Normal approximation
Y ≈ N(µ, σ2) where µ = np = 100× 0.5 = 50 and σ2 = np(1− p) = 50× 0.5 = 25.
Applying what is known as the continuity correction, P(Y = 50) = P(49.5 < Y < 50.5),
we proceed as follows:

P(49.5 < Y < 50.5) = P
(

49.5− 50
5

<
Y− µ

σ
<

50.5− 50
5

)
= P(−0.1 < Z < 0.1), where Z ∼ N(0, 1) as a result of the CLT,

= 0.0797. (2.83)

The above calculation of the probability for the standard normal distribution is accom-
plished using Matlab commands given below.
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mu = 0;

sigma = 1; % for Z ~ N(0,1)

pd = makedist(’Normal’,’mu’,mu,’sigma’,sigma);

probability = cdf(pd,0.1) - cdf(pd,-0.1)

Likewise,

P(Y = 75) = P(74.5 < Y < 75.5)

= P(
24.5

5
< Z <

25.5
5

)

= 3.09× 10−7. (2.84)

A close inspection of the above calculation reveals that the normal approximation is a
reasonable estimate of the binomial distributed random process. The approximation
is exceptionally good near the mean of the distribution where most of the probability
mass is concentrated.

2.8.6 Normal approximation to the Poisson distribution

Let X ∼ Poisson(λ). Then X−λ√
λ
→ N(0, 1) as λ→ ∞.

Example: Predicting earthquakes

The annual number of earthquakes registering at least 3.5 on the Richter Scale and
having an epicenter within 50 kms of downtown Colombo follows a Poisson distri-
bution with mean 6.5. What is the probability that at least 10 such earthquakes will
strike next year?33

Let X ∼ Poisson(λ = 6.5) be the random number of earthquakes that strikes Colombo
on a given year. P(X ≥ 10) = 1− P(X ≤ 9) = 0.1226. The Matlab calculations for the
above are done as follows.

lambda = 6.5;

pd = makedist(’Poisson’,’lambda’,lambda);

prob = 1 - cdf(pd,9);

Now, even though λ is not very large here, the Poisson estimate can be reasonably
approximated by the Normal distribution as shown below.

P(X ≥ 10) =

continuity correction

P(X > 9.5)

= P
(

X− λ√
λ

>
9.5− 6.5√

6.5

)
= P(Z > 1.1767), where Z ∼ N(0, 1),

= 0.119. (2.85)
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The above is computed in Matlab as follows.

mu=0;

sigma = 1;

pd = makedist(’Normal’,’mu’,mu,’sigma’,sigma);

probability = 1 - cdf(pd,(9.5-6.5)/(sqrt(6.5)));

33 This example is adapted from the textbook by Richard J. Larsen and Morris L. Marx, An Introduction to
Mathematical Statistics and its Applications, sixth edition, Pearson, 2018.

2.8.7 Poisson approximation to the Binomial distribution

Consider Sn ∼ Bin(n, pn) s.t. pn → 0, npn → λ as n → ∞, then Sn ∼ Poisson(λ) in
the asymptotic limit.

Example: application of Poisson approximation to a binomial distributed random pro-
cess

Suppose we roll two dice 24 times and X be the number of times a pair of aces appear.
Compute the following: P(X = 0), P(X = 2).

Here n = 24 and p = 1
36 which means np = 2

3 = λ. Estimation of P(X = k) for
k = 0, 2 is shown below using the Binomial distribution and the corresponding Pois-
son approximation is shown alongside.

Binomial distribution Poisson approximation

P(X = k) = (n
k)pk(1− p)n−k P(X = k) = e−λ λk

k!

P(X = 0)
(
1− 1

36
)24

= 0.5086 e−2/3 = 0.5134

P(X = 2) (24
2 )(

1
36 )

2(1− 1
36
)22

= 0.1146 e−2/3( 2
3 )

2 1
2! = 0.1141

From the probability estimates tabulated above, we may infer that the Poisson approx-
imation is very close to the predictions of the binomial distribution model.

2.9 Chapter project: Predicting insurance claim aggregates during a policy period

2.9.1 Prologue: Predicting risk of monetary loss associated with the insurance scheme for the
company using a Monte Carlo simulation

In this section, use the crude Monte Carlo simulation (and thereby the law of large num-
bers) to predict the following.

1. Estimate P(Y2 > 5) and P(Y3 > 5) using the crude Monte Carlo simulation. Compare
your simulation results here with the analytical results you obtained in section 2.5.1.
Comment on your comparisons.

2. Let the total annual income on the sale of insurance premiums be $ 1, 000, 000. What is
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the risk of yearly loss for the company in terms of P(Z > 1, 000, 000)? You may provide
your analysis of the risk by using an appropriate Monte Carlo simulation.
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2.11 Exercise problems

1. (Expectation of positive integer valued random variables) Let X be a random variable
with values on the positive integer set. Prove that E(X) = ∑∞

k=1 P(X ≥ k) ≤ ∞.

2. Consider a random variable X with p.d.f. fX(x) = 6x(1 − x) for x ∈ (0, 1) and zero
otherwise. Find E(X) and Var(X).

3. (Needle and π) A famous attempt of estimating the value of π was made by repeatedly
dropping a needle of length L ≤ 1 on the floor made of long continuous tiles of unit
width. This was done by estimating the probability that the dropped needle would touch
a tile edge and then comparing (equating) this answer with computer simulated exper-
iments of multiple needles dropped on such a tiled floor. What is the probability that a
dropped needle would touch a tile edge?

4. (Stuck in traffic!) Cars start successively at the origin and travel at different but constant
speeds along an infinite narrow road on which no passing is possible. When a car reaches
a slower car it is compelled to follow it at the same speed. In this way platoons will be
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formed whose ultimate size depends on the speeds of the cars but not on the times be-
tween successive departures. Consider the speeds of the cars to be independent random
variables with a common continuous distribution. Choose a car at random. Prove the
following.

(i) The probability that the chosen car does not trail any other car tends to half.

(ii) The probability that it leads a platoon of total size n (with exactly n− 1 cars follow-
ing it) tends to 1

(n+1)(n+2) .

(iii) The probability that the given car is the last in a platoon of size n tends to the same
limit as in (ii).

5. (Why do two bass guitars sound twice as loud as one?) Consider the sound wave ema-
nating from the guitar is given by a random unit vector. Waves coming from two indepen-
dent guitars would superimpose to give a resultant vector.

Figure 2.35: Two bass
guitarists in full song!

(i) Use the law of the cosines to write the square of the length of the resulting vector as
2 + 2 cos θ, where θ is the angle between the two random vectors.

(ii) Predict an appropriate distribution for θ.

(iii) Calculate the expected value of loudness34 of the resulting vector.
34 Loudness is proportional
to square of the amplitude of
vibration.

6. (How long will I bemoan my bad luck at the toll plaza?) While on a road trip through
the Grand Himalayan Highway, I come across a toll plaza with multiple parallel coun-
ters. I am in a dilemma - which of the several counter options do I exercise so that I can get off
the queue as fast as I can? Often in such situations, the car right behind (car-x) becomes a
marker of my decision - assuming the car right behind me chose a different counter, my assess-
ment of my luck is determined by who among the two of us stays ahead in the queue? To make
the problem simpler to solve, we will consider the following simplifications:

(a) all cars in the toll plaza are of equal size,

(b) all queues are stochastically independent,

(c) time interval between successive moves in any queue is an independent continuous
random variable with a common probability distribution,

(d) successive moves constitute Bernoulli trials where "success" means I move ahead by a
unit distance and "failure" means car-x moves ahead on a certain trial,

(e) the probability of success is p = 0.5.

Figure 2.36: The Grand
Himalayan toll plaza
(courtesy: The Times of
India).

Answer the following questions.

(i) What are my odds of getting ahead of car-x in the queue while I am at the toll
plaza?

(ii) If I do end up being ahead of car-x at some point, what is my expected waiting time
before I am ahead?35

35 The longer I have to wait to
get ahead of car-x, the longer
I will end up bemoaning my
bad luck at the toll plaza!

(iii) In what manner would the answers to the above two questions differ if p ̸= 0.5?

7. (Twin-engine failure) The M-09 is a twin engine jet. Let X be the random time to failure
of engine-1 and Y be the random time to failure of engine-2. X and Y are independent
random variables with distribution exp(µ1) and exp(µ2) with mean times to failure 1

µ1
=

1
µ2

= 100 flying hours. What is the probability that there is a dual engine flame out in
more than 75 flying hours?

Figure 2.37: What are
the odds of a dual en-
gine flame out?
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8. Let X and Y be independent random variables each with an exponential distribution
exp(λ). What is the p.d.f. of the following random variables?

(i) Z = X + Y.

(ii) W = Y− X2.

9. (Application of moment generating function) Consider a random variable X with p.d.f.
fX(x) = e−2x + 1

2 e−x, x > 0. Find the m.g.f. of X and use it to find the Var(X).

10. (Generating functions for branching process) Branching processes have wide applications.
For example, in the area of biology, a cell may die or split into two in each generation
leading to the survival or extinction of the species. We may be interested in knowing the
chances of survival of the species after n generations. The extinction probability un :=
P(Xn = 0) where Xn is the size of the nth generation. The extinction probability un can be
computed iteratively by using the probability generating function (p.g.f.): P(z) := E(zX) =

∑∞
j=0 pjzj, where 0 ≤ z ≤ 1 and pj is the probability P(X = j), that in the lifetime of an

individual cell, it produces j = 0, 1, 2, ... new offspring.

Figure 2.38: Cell divi-
sion.

Thence
un = P(un−1) for n = 2, 3, 4, .... (2.86)

with u0 = 0 and u1 = p0. It follows that in the asymptotic limit n → ∞, u∞ satisfies
the fixed point iteration u = P(u) and is its smallest positive root. Answer the following
questions about a branching process.

(a) Deduce the equation 2.86 by using the definition of the probability generating func-
tion.36 36 You may have to deduce

an intermediary step un =

∑∞
k=0 uk

n−1 pk , for n = 2, 3, ...
and use the law of total
probability.

(b) A carcinoma begins with a single cell. In each generation, a carcinogenic cell dies with
a probability 1

3 or doubles with probability 2
3 . What is the probability that the cancer

will die out in the third generation? What is the probability that the cancer will pro-
liferate forever? What are the above probabilities if the cancer initially began with two
cells?
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