CHAPTER

SOLVING LINEAR

PROGRAMMING PROBLEMS:
THE SIMPLEX METHOD

We now f1re ready to begin studying the simplex method, a general procedure for solving linear pro-
grammmg.problems. Develgped by the brilliant George Dantzig' in 1947, it has proved to be a
remarkably efﬁftlent method that is used routinely to solve huge problems on today’s computers. Except
for its use on tiny problems, this method is always executed on a computer, and sophisticated software
packages are widely available. Extensions and variations of the simplex method also are used to perform
postoptimality analysis (including sensitivity analysis) on the model.

Because linear programming problems arise so frequently for a wide variety of applications, the sim-
plex method receives-a tremendous amount of usage. During the early years after its development in 1947,
computers were still relatively primitive, so only relatively small problems were being solved by this new
algorithm. This changed rapidly as computers became much more powerful. Toward the end of the 20th
century, problems with several thousand functional constraints and variables were being solved routinely.
The progress since then has been remarkable. Both because of further explosions of computer power and
great improvements in the implementation of the simplex method and its variants (such as the dual simplex
method described in Sec. 8.1), this remarkable algorithm now can sometimes solve huge problems with
millions (or even tens of millions) of functional constraints and variables. We will not attempt to delve
into advanced topics that further enable its exceptional efficiency.

This chapter describes and illustrates the main features of the simplex method. The first section intro-
duces its general nature, including its geometric interpretation. The following three sections then develop
the procedure for solving any linear programming model that is in our standard form (maximization, all
functional constraints in < form, and nonnegativity constraints on all variables) and has only nonnegative
right-hand sides &; in the functional constraints. Certain details on resolving ties' are deferred to Sec. 4:5.
Section 4.6 describes how to reformulate nonstandard forms of linear programming models to prepare ‘tor
applying the simplex method. The subsequent two sections tben present alitematwe methods for helpmg
(0 solve these reformulated models. Next, we discuss postoptimality analysis (Sc_u“ 4.9), and describe Fhe
computer implementation of the simplex method (Sec. 4.10?. Section fl.ll then mlro@ces an altefnatnve
0 the simplex method (the interior-point approach) for solving huge linear programming problems.

er of operations research, George Dantzig is commonly referred to as the father
f the simplex method and many key subsequent contributions. The authors had
of Operations Research at Stanford University for over 30 years.

ed away in 2005 at the age of 90.
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W'dely revered as perhaps the most important pione

of lineqr programming because of the development 0

e Privilege of being his faculty colleagues in the Depurlmenl
" Dantzig remained professionally active right up until he pass
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EX] THE ESSENCE OF THE SIMPLEX METHOD

The s.lmplex method is an algebraic procedure. However, its underlyin
standing these geometric concepts provide a strong intuitive feeling for
and what makes it so efficient. Therefore, before delving into algebraic det
on the big picture from a geometric viewpoint.

. To illustrate the general geometric concepts, W€ shall use
in Sec. 3.1. (Sections 4.2 and 4.3 use the algebra of the simplex meth

Section 5.1 will elaborate further i larger problems-
on these geometric concepts for larger P o _
To refresh your memory, the model and graph for this example are repeated 11 Fig. 4.1. The five

constraint boundaries and their points of intersection are highlighted 1n this figure beCaty th;y e
keys to the analysis. Here, each constraint boundary is a line that forms the boun(%al')’ of what lepCI'-
mitted by the corresponding constraint. The points of intersection are the corner-point solutuzins400the
problem. The five that lie on the corners of the feasible region—(0, 0), 0, 6). (2. 6). (4, 3), and (4 O)—
are the corner-point feasible solutions (CPF solutions). [The other three—(0. ©)- (4, 6) and (6, 0)—are

called corner-point infeasible solutions.]

Max1i

pts are geometric. Under-
x method operates
cus in this section

fos conce
how the simple
ails, we fo

s Co. example presented

the Wyndor Glas ;
lve this same example.)

od to sO

X2
x=0 subject to 4
X1 S
0.9) rey 212
3x1+2x2=18 3x; + 2x7 518
and
X1 > 0, X2 > 0
(0, 6) =12

0.0) Sl ] | n=0
(4,0) (6, 0) x|

® FIGURE 41
Constraint boundaries and corner-point solutions for the Wyndor Glass Co. problem

lin In this examPle, each comfff-pOint solution lies at the intersection of rwo constraint boundaries- (Fot ©
Seci?;npr(;grammng problem leth2n decision variables, each of its corner-point solutions lies at the inter
of n constraint boundaries.”) Certain pairs of the CPF solutions in Fig. 4.1 share a constrain

ary, and other pairs do not It will be impo o disti 1n ‘
. t ] 1 th 1l ¢
general definitions. rtant to distinguish between these cases by using e foll0"==

2
Although a corner-point solution i i !
1 :
possible that one or l:nore ddi on 1s deﬁneq in terms of n constraint boundari i ion gi . on. 1 2 )
additional constraint boundaries pass through thi es whose intersection gives this solutiof
ough this same point



Solvi '
olving Linear Programming Problems: The Simplex Method 109

.y any lincar programming proble ,

l:l:‘l ﬂ thev \hl,".\\,-” | u’:nl\“‘ I l"lll\ with n decision variables. two CPF solutions are adjacent to each
whe y S straint b ariaq ! .

p oundaries. The two adjacent C'PF solutions are connec ted by a line

Lo nt (h‘“ ll\ s on ” CSC Same .\h'”" I y ' C

W .L dIC( (“n\“””“ l'( “n(l | > ‘ | .

. . . . aries. suchn ¢ y ‘ " .
' lh" h a.\ll\h‘ ‘\‘P")" | Il 1 |IIIC h g ntis c'(. (I to @

SIPPN - )

Since ’1 ")* in the example, two of its CPF solutions are adjacent if they share one constraint boundary;
for _cxal.“l’k_- (0. 0) and (0, 6) are adjacent because they share lthc x, =0 constraint boundary. The feasihle;
region in Fig. 4.1 has five edges, consisting of the five line segments forming the boundary of this region.
Note that two edges emanate from each CPF solution. Thus, each CPF solution has two adjacent CPF solutions
(cach lying at 'the ‘other epd of one of the two edges), as enumerated in Table 4.1. (In each row of this table,
the CPF solution in the first column is adjacent to each of the two CPF solutions in the second column, but
the two CPF solutions in the second column are not adjacent to each other.) | | .

® TABLE 4.1 Adjacent CPF solutions for each CPF
solution of the Wyndor Glass Co. problem

CPF Solution Its Adjacent CPF Solutions
(0, 0) (0, 6) and (4, 0)
(0, 6) (2, 6) and (0, 0)
(2, 6) (4, 3) and (0, 6)
(4, 3) (4, 0) and (2, 6)
(4, 0) : (0, 0) and (4, 3)

One reason for our interest in adjacent CPF solutions is the following general property about such
solutions, which provides a very useful way of checking whether a CPF solution is an optimal solution.

Optimality test: Consider any linear programming problem that possesses at least one optimal
solution. If a CPF solution has no adjacent CPF solutions that are better (as measured by Z),

then it must be an optimal solution.

Thus, for the example, (2, 6) must be optimal simply because its Z = 36 is larger than Z = 30 for (0, 6)
and Z =27 for (4, 3). (We will delve further into why this property holds in Sec. 5.1.) This optimality
test is the one used by the simplex method for determining when an optimal solution has been reached.

Now we are ready to apply the simplex method to the example.

Solving the Example
simplex method does (from a geometric viewpoint) to solve the Wyndor

Here is an outline of what the _ .
Glass Co. problem. At each step, first the conclusion 18 stated and then the reason 1s given 1n parentheses.

(Refer to Fig. 4.1 for a visualization.) . . o . :
ial CPF solution to examine. (This is a convenient choice

Initialization: Choose (0, 0) as the initial & :
because no calculations are required to identify this CPF solution.) . :
(0, 0) is not an optimal solution. (Adjacent CPF solutions are better.)

Optimality Test: Conclude that e i ,
Iterationt)jl; Move to a better adjacent CPF solution, (0, 6), by performing the following three steps.

1. Considering the two edges of the feasible.regivon
that leads up the x, axis. (With an objective func

at a faster rate than moving along the x, axis.) ' . o |
2. Stop at ﬂrler first new cons%raint boundary: 2x; = 12. [Moving farther in the direction selected in step 1

leaves the feasible region; €8 moving to the second new constraint boundary hit when moving in that

direction gives (0, 9), which is a corner-point infeasible solution.]

that emanate from (0, 0), choose to move along the edge
tion of Z=3x; + Sxy, moving up the x, axis increases Z
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3. Solve for the intersection of the new set of constraint boundaries: (0, 6)-
straint boundaries. x; = 0 and 2x, = 12, immediately yield this solution.)

Oprimality Test: Conclude that (0, 6) is nor an optimal solut
>: Move to a better adjacent CPF solution, (2, 6), by per

lreration 2

1. Considering the two edges of the feasible region th

edge that leads to the right. (Moving along this edge increases Z,

down the x> axis decreases Z.)

Stop at the first new constraint boundary encountered wh
(Moving farther in the direction selected in step 1 leaves t
Solve for the intersection of the new set of constraint
boundaries: (2, 6). (The equations for these constraint
boundaries, 3x; + 2x, = 18 and 2x, = 12, immediately

vield this solution.)

Optimality Test: Conclude that (2, 6) is an optimal solu-
tion. so stop. (None of the adjacent CPF solutions are better.)

!‘J

‘»

This sequence of CPF solutions examined is shown in
Fig. 4.2, where each circled number identifies which iteration
obtained that solution. (See the Solved Examples section for
this chapter on the book’s website for another example of
how the simplex method marches through a sequence of CPF

solutions to reach the optimal solution.)
Now let us look at the six key solution concepts of the

simplex method that provide the rationale behind the above
steps. (Keep in mind that these concepts also apply for solv-
ing problems with more than two decision variables where
a graph like Fig. 4.2 is not available to help quickly find an

optimal solution.)

The Key Solution Concepts

en movin )
he feasible region.)

(The equations for these con-

acent CPF solution is better.)

. adj
ion. (An adj g the following three steps:

formin
choose to move along the

0, 6),
at emanate from ( )backtracking to move back

whereas

g in that direction: 3x; + 2x, = 18.

4,3)

Z=12

0.0 Z=0 4,0) ¥y

® FIGURE 4.2

This graph shows the sequence of CPF
solutions (@, ®, @) examined by the simplex
method for the Wyndor Glass Co. problem.
The optimal solution (2, 6) is found after just
three solutions are examined.

The first solution concept is based directly on the relationship between optimal solutions and CPF solutions

given at the end of Sec. 3.2.

Solution concept 1: The §implex method focuses solely on CPF solutions. For any problem with
at least one optimal solution, finding one requires only finding a best CPF solution.’

s;n;((: th@ n;mbetr (‘)f feas?b?e solutions generally 1s infinite, reducing the number of solutions that need to
amined to a small finite number (just three in Fig. 4.2) is a tremendous simplification

The next solution concept defines

the flow of the simplex method.

Solution concept 2: g . .
Pt 2: The simplex method is an iterative algorithm (a systematic solution procedure

that 'keeps repeating a fixed series of
obtained) with the following structure

steps, called an iteration, until a desired result has been

3
The only restriction is that th m m ded
€ pri
proble ust possess CPF solutions. This ig ensured if
. red 1f the feasible region is boun
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[nitialization: Set up to start .
PO start iterations, including finding an initial CPF solution.

Optimality test: Is the current Cpp solution optimal?
. al’

If nO’l If yes —— Stop.

teration: Perf : ) ]
Orm an iteration to find a better CPF solution.

When the example was solved, note how this flow d;
optimal solution was found.
We next focus on how to get started.

agram was followed through two iterations until an

SO!‘{“O“IICZ“C?P‘ 3: Whenever possible, the initialization of the simplex method chooses the
orer™ ja  ceciston \l;filrlables equal to .Z.ero) to be the initial CPF solution. When there are too
many decision variables to find an initial CPF solution graphically, this choice eliminates the
need to use algebraic procedures to find and solve for an initial CPF solution

Choosing the origin commonly is possible when all the decision variables have nonnegativity constraints
because the intersection of these constraint boundaries yields the origin as a corner-point solution. Thi;
solution then is a CPF solution unless it is infeasible because it violates one or more of the functional
constraints. If it is infeasible, special procedures described in Secs. 4.6—4.8 are needed to find the initial
CPF solution.

The next solution concept concerns the choice of a better CPF solution at each iteration.

Solution concept 4: Given a CPF solution, it is much quicker computationally to gather infor-
mation about its adjacent CPF solutions than about other CPF solutions. Therefore, each time the
simplex method performs an iteration to move from the current CPF solution to a better one, it
always chooses a CPF solution that is adjacent to the current one. No other CPF solutions are
considered. Consequently, the entire path followed to eventually reach an optimal solution is along

the edges of the feasible region.
The next focus is on which adjacent CPF solution to choose at each iteration.

After the current CPF solution is identified, the simplex method examines
n that emanate from this CPF solution. Each of these edges
the other end, but the simplex method does not even take
solution. Instead, it simply identifies the rare of improve-
ong the edge. Among the edges with a positive
along the one with the largest rate of improve-
for the adjacent CPF solution at the other
CPF solution as the current CPF solution

Solution concept 5:
each of the edges of the feasible regio
leads to an adjacent CPF solution at
the time to solve for the adjacent CPF
ment in Z that would be obtained by moving al
rate of improvement in Z, it then chooses to move

ment in Z. The iteration is completed by first solving

end of this one edge and then relabeling this adjacent
eded) the next iteration.

for the optimality test and (if ne . o [
. the x, axis would give a rate
At the first i i ng from (0, 0) along the Cdge on ]
iteration of the example, moving O _
of improvement in Z of 3 (Z inclr)eases by 3 per unit increase in xy), whereas moving along. thef ;3 d?g t?\?’.
the X, axis would give a rate of improvement inZof 5(Z mcregses l?y 5 per unit m;rease 1'n :\2. . ‘5 f
deCiSion . d tg along the latter edge. At the second iteration, the only edge emanating Irom
1S made to move
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g to (2, 6), so the decision

(0. 6) that would yield a posifive rate of improvement in Z is the edge leadin

is made to move next along this edge.
The final solution concept clarifies how the o

med efficiently-

ptimality test is perfor
hod examines each of the

~ i ; : i et
Solution concept 6: Solution concept 5 describes how the simplex m  This . amination of an

cdges of the feasible region that emanate from the current C obtained by moving

: . o . : ould be
edge leads to quickly identifying the rate of improvement 12ri rtlgatAwpositive  te of improvement

along this edge toward the adjacent CPF solution at the oth P CPF olution, whereas a

in Z implies that the adjacent CPF solution is better than the curr : Trerefore, the
sitive rate of

negative rate of improvement in Z implies that the adjac h
optimality test consists simply of checking whether any of the e 1
solution 18 optimal.

improvement in Z. If none do, then the current CPF

In the example, moving along cither edge from (2, 6) decreas

immediately gives the conclusion that (2, 6) is optimal.
If you would like to see another example illustrating

method., one is provided in the Solved Examples section fo

es Z. Since W€ want to maximize Z, this fact
cepts underlying the simplex

the eometric con .
- the book’s website.

¢ this chapter on

[¥] SETTING UP THE SIMPLEX METHOD

Section 4.1 stressed the geometric concepts that underlie the simplex method. However, this algorithm

normally is run on a computer, which can follow only algebraic iI.IStI'llCtiOIlS. Theireft())re., it is negessary
to translate the conceptually geom to a usable algebraic procedure. In

etric procedure just described 1n :
this section, we introduce the algebraic language O nd relate it-to the concepts

f the simplex method a
of the preceding section. We are assuming (prior

to Sec. 4.6) that we are dealing with linear pro-
gramming models that are in our standard form (as defined at the end of the introduction to this
chapter).

The algebraic procedure is based on solving systems of equations. Therefore, the first step in setting
up the simplex method is to convert the functional inequality constraints into equivalent equality con-
straints. (The nonnegativity constraints are left as inequalities because they are treated separately.) This
conversion is accomplished by introducing slack variables. To illustrate, consider the first functional
constraint in the Wyndor Glass Co. example of Sec. 3.1,

x <4
The slack variable for this constraint is defined to be
x; =4 —x,
which is the amount of slack in the left-hand side of the inequality. Thus,

X +x;3=4.

Given this equation, x; < 4 | = n

/ , X £ 4 if and only if 4 Therefo he o
. _x — . 1 1 S
entirely equivalent to the pair of constraints =620 crefore, the rlgmal consrt é )

X1+x3=4 and x> 0. S(’*»g‘%

Upon the i i
he introduction of slack variables for the otlse o funct: o) lined
r functional constraints, the origi"®. Jent

e left) can now be replaced by the equi¥?
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Oricinal Form of the Model :
uemented Form of the ”f"lf/"

Maximize 7 = 31, 4 &
2 Maximize J = 3y, 4+ Sr,
subject to ‘
subject to
1 < 4 A
(1) Y b vy = 4
v, < 12
“ (2) 2x " \‘.‘2’ =12
34+ 2 < 1 ) )
; 2 < 18 (3) 3x, + 2x, +xs=18
and /
and g !
020, 4u>0 S :
: v, 2 0. forj=1.2.3.4.5

yJthough both forms Qf the model represent exactly the same problem, the new form is much
~onvenient for algebraic manipulation and for identification of CPF soiutions We call .thiS tche r:lrl)re-
mented form of the problem because the original form has been augmented b some I g‘
variables needed to apply the simplex method. g i

If a slack \'arigble equals O in the current solution, then this solution lies on the constraint boundary
for the conespon41ng functional constraint. ‘A value greater than 0 means that the solution lies on the
feasible side of this constraint boundary, whereas a value less than 0 means that the solution lies on the
infeasible side of this constraint boundary. A demonstration of these properties is provided by the demon-
stration example in your OR Tutor entitled Interpretation of the Slack Variables.

The terminology used in Sec. 4.1 (corner-point solutions, etc.) applies to the original form of the

problem. We now introduce the corresponding terminology for the augmented form.

An augmented solution is a solution for the original variables (the decision variables) that has been

augmented by the corresponding values of the slack variables.

) in the example yields the augmented solution 3. 31
= 1, X4=8, and x5=5.

For example, augmenting the solution (3, 2 ¢ )
secause the corresponding values of the slack variables are x3

A basic solution is an augmented corner-point solution.

point infeasible solution (4, 6) in

Fig. 4.1. Augmenting it with the result-
=0, x,=0, and x5 =—6 yields the corresponding basic soluti

To illustrate, consider the corner-
ing values of the slack variables x3 on (4, 6.
0,0, -6).

The fact that corner-

he following definition:
A basic feasible (BF) sol

Thus, the CPF solution (0, 6) in the example 1
In augmented form.

The only difference betwe
CPF solutions) is whether the values O
responding corner-point solution is obtai
Nc and algebraic relationships between
Sec. 5.1,

point solutions (and so basic solutions) can be either feasible or infeasible implies

ution is an augmented CPF solution.

S equivalent to the BF solution (0, 6, 4,0, 06) for the problem

orner-point solutions (or between BF solutions and
bles are included. For any basic solution, the cor-
leting the slack variables. Therefore, the geomet-
ns are very close, as We will’describe further in

en basic solutions and ¢
f the slack varia
ned simply by de
these two solutio

¥
ective function because the coefficients there are 0.

“The slack variables are not shown in the obj
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very important parts of the standard
braic properties. For the augmented
has 5 variables and 3 equations, s0

Because the terms basic solution and basic feasible solution arc
\"ocabul‘ary of linear programming. we now need to clarify their alge
form of the example, notice that the system of functional constraints

Nlnpber of variables — number of equations =5 -3 =2.

y two variables can be chosen to be set

of the remaining three variables.” The

ables (called the nonbasic variables)
s for the other three variables

bed in the following general

This fact gives us 2 degrees of freedom in solving the system, since an
equal to any arbitrary value in order to solve the three equations in terms
simplex method uses zero for this arbitrary value. Thus, two of the varl
are set equal to zero, and then the simultaneous solution of the three equation
(called the basic variables) is a basic solution. These properties are descri
definitions.

A basic solution has the following properties:

r a basic variable. ‘
(now equations). Therefore,

the number of functional

ariable 0
f functional constraints
ariables minus

. Each variable is designated as either a nonbasic v
. . \

. The number of basic variables equals the number o

the number of nonbasic variables equals the total number of v

constraints.
3. The nonbasic variables are set equal to zero. )
4. The values of the basic variables are obtained as the simultaneous solution

(functional constraints in augmented form). (The set of basic variables 1 ofte
5. If the basic variables satisfy the nonnegativity constraints, the basic solution 1
that BF is an abbreviation for basic feasible.)

—

[

of the system of equations
1 referred to as the basis.)
a BF solution. (Remember

To illustrate these definitions, consider again the BF solution (0, 6, 4, 0, 6). This solution Was obtained
before by augmenting the CPF solution (0, 6). However, another way to obtain this same solution is to
choose x; and x; to be the two nonbasic variables, and so t i are set equal to zero. The three
equations then yield, respectively, x3 =4, X, = 6, and x5 = 6 as the solution for the three basic variables,
as shown below (with the basic variables in bold type):

x; =0 and x4 =0 so

(1) X1 + X3 = 4 x3=4
(2) ZX2 + X4 =12 x2=6
(3) 3x +2x +x5=18 X5=06

solution (0, 6, 4, 0, 6) is indeed a

Because all three of these basic variables are nonnegative, this basic
s website includes another example

BF solution. The Solved Examples section for this chapter on the book’

of the relationship between CPF solutions and BF solutions.
. Just as cgrtain pairs of CPF solutions are adjacent, the corresponding pairs of BF solutions
said to be adjacent. Here is an easy way to tell when two BF solutions are adjacent.

also are

. Two BF solutipns are adjacent if all but one of their nonbasic variables are the same. This implies that all
but one of their basic variables also are the same, although perhaps with different numerical values.

ariable

Consequently, moving from the current BF solution to an adjacent one involves switching one Vv
basic

. ] ) . nd then a

5This method of determini
ining the number of degrees of freedom for a system of equations is valid as long as the system does 1t

include any redundant equations. Thi iti
. This condition alwa i '
e g o0 of & liar prograiing Mok ys holds for the system of equations formed from the functional constraints
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To illu.slralc adjacent BI-: _wlum;#\;m,smcr one pu‘)'. z&*cnl CPF solutions in Fig. 4.1: (0, 0) and
(0, 6). Their augmented solutions, (070, 4, 12, 18) and (0.6, 4, 0, 6), autumaticull); are adjacent BF solu-
tons. l.{o\\'C\'.Cl'. you do not need to look at Fig. 4.1 to draw this conclusion. Another signpost is that their
/) nonba-\'lf R “-“.) “”F] (X1, xq), are the same with just the one exception—rx, has been replaced
by ~"J-_(“'1S°q‘_’0"(ly‘ moving from (0, 0, 4, 12, 18) to (0, 6, 4, 0, 6) involves switching x, from nonbasic

(o basic and vice versa for x;. o v - g X2
, \\_hcn.\\e fleal th.the problem in augmented form, it is convenient to consider and manipulate the
objective function equation at the same time as the new constraint equations. Therefore, before we start

(he simplex method, the problem needs to be rewritten once again in an equivalent way:

Maximize Z, - ) A
\‘ } )
subject to | ¢ ‘A ;oo - '\ p P
~ l/ 0 75Va A Y f / ’ ‘ '
(0) Z- 3.\'1 — 5}'2 = 0 [\ /) |
(1) Xy + X3 = 4 '\ }’x\ Ve 2 - !
2) 2x, + x4 =12 i P R
3) 3x; + 2x; +x5=18 WA ! PN NDATT 77 . o
. - ~ e, ¢ A '
and J \\JH \V,VA,,‘\?‘, / -
Uineast £ 7"

xj_>_0, forj=1,2,...,5. e

It is just as if Eq. (0) actually were one of the original constraints; but because it already is in equality

ed. While adding one more equation, we also have added one more unknown

form, no slack variable is need
ic solution as described

(Z) to the system of equations. Therefore, when using Egs. (1) to (3) to obtain a bas

above, we use Eq. (0) to solve for Z at the same time.
Somewhat fortuitously, the model for the Wyndor Glass Co. problem fits our standard form, and all

its functional constraints have nonnegative right-hand sides b;. If this had not been the case, then additional
adjustments would have been needed at this point before the simplex method was applied. These details

are deferred to Sec. 4.6, and we now focus on the simplex method itself.

FE] THE ALGEBRA OF THE SIMPLEX METHOD

descriptions in the two preceding sections, we now can sk
r algebraic viewpoint.

Building on the etch a conceptual outline of the
simplex method from either a geometric 0

Conceptual Outline of the Simplex Method

o identify the initial solution for starting the simplex method.

1. Perform initialization t artng the
current solution is optimal.

2. Apply the optimality test to determine if the
a. If so, stop.
b. If not, perform an iteration. . |
3. Step 1 of an iteration: Determine which direction in which to move to get to the next solution.
4. Step 2 of an iteration: Determi
5. Step 3 of an iteration: Solve fo
6. Return to the optimality test.

ne where to stop to reach this next solution.
r this new solution.
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[nitialization

The choice of x; and X to be the nonbasic Variables (the variables set equal to zero) for the initial BF solu-
ion is based on solution concept 3 in Sec. 4.1 This choice eliminates the work required to solve for the

pasic variables (x3, x4, x5) from the following System of equations (where the basic variables are shown
in bold type):

Xp=0and x, =0 so

M x + x3 = 4 X,= 4
2) 2x, + x4 =12 X, =12
A3) 3x; + 2x, +x5=18 xs=18

Thus, the initial BF solution is 0, 0, 4, 12, 18).

Notice that this solution can be read immediately because each equation has just one basic variable,
which has a coefficient of 1, and this basic variable does not appear in any other equation. You will soon
see that when the set of basic variables changes, the simplex method uses an algebraic procedure (Gauss-
ian elimination) to convert the equations to this same convenient form for reading every subsequent BF
solution as well. This form is called proper form from Gaussian elimination.
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S A OVE ek oo -
= Optimality Test | "wa'lc ff@/"h%"'

) ‘The objective function is a'(%é 0’ '

L= 31’] + 5.\':.

4

2BV,

so Z=0 for the initial BF solution. Because none of the basic variables (x3, Xy, Xs5) have a nonzep, Coef.
~ ficient in this objective function, the coefficient of each nonbasic variable (x;. x,) gives the rate of improy_
ment in Z if that variable were to be increased from zero (while the Yalues of the basic variapjeg are
-~ adjusted to continue satisfying the system of equations).® These rates of improvement (3 aqd 5) are pyg;.
iive. Therefore, based on solution concept 6 in Sec. 4.1, we conclude that (0, 0, '4. 12,. 18) is not Optimg]
B For each BF solution examined after subsequent iterations, at least one basic variable has a nonzery

= coefficient in the objective function. Therefore, the optimality test then will use the new Eq. (0) to rewrite
N the objective function in terms of just the nonbasic variables, as you will see later.

{

E - .
~ <>Dete$ining the Direction of Movement (Step 1 of an Iteration)

Increasing one nonbasic variable from zero (While adjusting the values of the basic variables to continue
satisfying the system of equations) corresponds to moving along one edge emanating from the curren

Vi

== CPF solution. Based on solution concepts 4 and 5 in Sec. 4.1, the choice of which nonbasic variable to

; increase is made as follows:
Ef‘:, Z=3x, + 5x, . ( ' \ b5
W) Increase x,?  Rate of improvement in Z = 3. ( \J/ v

Increase x,”  Rate of improvement in Z = 5. > o, N \“ i.’

=~ 5> 3. so choose x, to increase. N

F—‘-‘ As indicated next,.we call x, the entering basic vacriable for iteration 1.7 .~ 07 O, ke \'2) lg
X9 TVt A~ NG - Hasde Atananl, -
P

="\ \
vy

Al any iteration of the simplex method, the purpose of step 1 is to chdose one nonbasic ;'(Iriuh/v P
¢ increase from zero (while the values of the basic variables are adjusted to continye
" _of equations). Increasing this nonbasic variable from zero will convert it 1o a basic
BF solution. Therefore, this variable is called the entering basic variable for (e curre
it 1s entering the basis).

atisfying the system

ariable for the next
ntiteration (because

Determining Where to Stop (Step 2 of an Iteration)

Step 2 addresses the question of how far to increase the. enter.ing basic variable . before « .

Increasing x, increases Z, so we want to go as fgr as possible WlthOUt leaving (he fez.lsible :,‘:‘.lopb'u‘l:l‘-
requirement to satisfy the functional constraints in augmented form (shown below) meang (htbmn. S
ing x, (while keeping the nonbasic variable x; = 0) changes the values of SOme of the
as shown on the right.

at increas-
4SIC variables

=0, S0 v - .
) x| 2 wﬂ‘f'@_ =g Aa e
1 1 +x = Xy = _ ag ~ |
((2)) | 2x, | + X4 =12 xy=12-2x 'Lga;,;;.: ny . .% £€‘3m«d
: @
2 txs=18  xy=18-2n, ﬁ’ the, wing oo
3 3x+2y 5 ‘ . o
adC’ Vasi o t‘)‘
ficients of g iables is based these variables being on (e . : .
%Note that this interpretation of the coefficients of the ¥, vurlel)lu‘ is ‘husu l;n— o ) :.(Wl'f'f_'" hang -
Z = 3x, + 5x,. When these variables are brought to the left-hand side for Eq. 0), Z = Iy — o0 ficien, k‘h-...g
=3x; +ox. 7

their signs.
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r requirement for feasibility is that all the variables be nonnegative. The non-basic variables

. o the entering basic variable) are nonnegati

ycluding HE o gative, but we need to c ” ¢

(in¢ - lating the nonnegativity constraints : . to check how far x, can be increased
vithout V101t Straints for the basic variables.

The othe

A ."") s 2 s
=n y . ¥R 1 g >
=420 © upper bound on x,. Z k\,v W Kakep Tat
125,20 3 x, <12 ¢ . v Y .
x=1a70= 2275 =0 cminmum. | MM Nodio Jekebpervéd
d o £ 5. p = S 0an ainid
X ~—18-2x,>0 =>x,<§:9 ‘ Wheed. o 42 ﬁ{,‘/-# 1 eormnrd
5 = l= 2 = . \ y » : v
\ 2 y“'} W% Yas” C"{ R ALY ¢

o sl . Yo~ DO o
Thus. X2 ¢an be mcreasuq Just l&? 6, at which point x, has dropped to (. Increasing x, beyond 6 would
quse X4 10 become negative, which would violate feasibility. ’

These calculations are referred to as the minimum ratio test. The objective of this test is to determine
which basic variable firops.to zero first as the entering basic variable is increased. We can immediately
rule out the basic varlablg In any equation where the coefficient of the entering ba'sic variable is zero or
pegative. since such a basic variable would not decrease as the entering basic variable is increased. [This
is what happened with x3 in Eq. (1) of the example.] However, for each equation where the coefficient of
he entering basic variable is strictly positive (> 0), this test calculates the rafio of the right-hand side to
the coefficient of the entering basic variable. The basic variable in the equation with the minimum ratio
s the one that drops to zero first as the entering basic variable is increased.

C

At any iteration of the simplex method, step 2 uses the minimum ratio test to determine which basic vari-

«able drops to zero first as the entering basic variable is increased. Decreasing this basic variable to zero will
convert it to a nonbasic variable for the next BF solution. Therefore, this variable is called the leaving basic
variable for the current iteration (because it is leaving the basis).

ws, x, is the leaving basic variable for iteration 1 of the example.

iolving for the New BF Solution (Step 3 of an Iteration)

nereasing x, = 0 to x, = 6 moves us from the initial BF solution on the left to the new BF solution on

he right. R
'Hf\.,fo
et

New BF solution ’ W
]

x1=0’ X4=0 AL.- "
x3=?, x2=6, X5=? (Mn‘

Initial BF solution

Nonbasic variables: x; =0, x=
Basic variables: x3=4, x=12, x5= 18
of equations to a more convenient form (proper form from
ality test and (if needed) the next iteration with this new
dentify the values of X3 and xs for the new solution.
f equations, where the new basic variables are shown in

able in the objective function equation):

T‘he purpose of step 3 is to convert the system
f:aussian elimination) for conducting the optim
3F solution, In the process, this form also will 1

Here again is the complete original system O

0l type (with Z playing the role of the basic vari )
\‘ < _' /
(0) Z — 25 P 5 =0 ) p
(1) 4 i % =4
2) X1 +X3 AN (
A 2x I X = a
(3) /! : > é =18.
Jxl + 2x2 + X5
Moy K- .
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We can use either of two typeg of eleme;n
4

hasic varl

A aced 1, as the foe

‘ |~(~\|.Il(‘ ‘ o entar ag

¥ Thus. v, has ‘_', o perform some elem 1'f"¥icnts o
ot %4 (0, 0. 1, 0) as the new coetticient

\ | \4 it dei

coefficients of 14

leehran \\[‘n‘l.lll(m"‘

1 ¢ nstant.
an equation by a nonzero co

ivide ation.
ol Multiply (or divide) or from) another equ

~ 2 Add (or subtract) a multiple of one equation to (

icients of x, in the above s
are for performing these operations, note that thetlf:siffécc)efﬁcients to become (), 0, )1”:::1
To p:ea[:,:re-s 0, 2, and 2, respectively, whereas. we want e the first type of elementary i
:Cqua":::‘cw To turn the coefficient of 2 in Eq. (2) into 1, we
respectively.

-"operation by dividing Eq. (2) by 2 to obtain * M{O (\J ‘ | ¥ %. lzb
Q\ 1 | \|
Q) xn+ = 6.

.

To turn the coefficients of —5 and 2 into zeros, we need to use the second type zof. elem;lqmry algebraj,
S 9(\pcra\i()n. In particular, we add 5 times this new Eq. (2) to Eq. (0), and subtract ITECS 1S new Eg, (),

& from Eq. (3). The resulting complete new system of equations is 1

. 5 S A ) —
¥ zom 4 Mo =30 \Q o W x 0!
i (1) X+ < //{7(— ,/"*\()W (N ”‘QC\? o ,
» Vv’ y (\ ¢ . Y T
— (2) x2 —'X4 :’/‘6 /\Q), ~ g e LA [
4/2 74 ; - ‘ C . (6
w (3) 3X1 - X4+ X5 = 6. . —T‘C'l'\'
z Since x; = 0 and x, = 0, the equations in this form immediately yield the new BF '
2 %) =(0.6,4.0,6), which yields 7~ 30. solution, (x), xy, x;, x,
— This procedure for obtaining the simultaneoys solution of g gyge i T
A Gauss-Jordan methoq of elimination, or Gaussian eliminatioy, for yh m7 of linear €quations is called the

is the use of elementary-algebraic 0
from Gaussian elimination, where
€quation) and has coefficient of

short

Perations to redyce
each basic variap]e has b
+1 in that €quation,

:k

dm of equationg to proper form
from 4 but one €quation (its

Optimality Test for the New BF Solution \\

- X
-

een el_iminate

The current Eq. (0) gives the value of the objective function iy te

'S of just the
urrent no . 5
Z=30+ 3x, - %x4. J Dbasic variables

Increasing either of these nonbasic variables from zero (while
to continue satisfying the system of equations) would result i
solutions, Because X has a positive coefficient, increasing x,
is better than the current BF solution, so the current solution

adjusting th
: € Valyeg
Moving tOwarq Of the ba:
a .
would leaq ¢, aone Of the twe, SIC_Varlables

15 N0t Optimy  “Yacen, BE o “ent BF

Ution thay
7Actua]ly, there are some technical differences between the Gauss-Jordan method of elimination a4 Gaugy;
. o, . Q)
shall not make this distinction, °1"nin
a[lo

The key ¢ . ~
the origingy Syste ) oneept for this method

v
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“eration 2 and the Resulting Optimal Solution

. .C . B
S““h~ cntering basic variable.
» the N

-~ otep 2. the current syst 1 i
For Step ystem of equations yields the following conclusions about how far
ar x,

L ceased (with X3 = 0):
L

‘.:;4—.\'120 > X <%_—_4,

=620 = no upper bound on x;.

6 "
r=6-3x20 =>x1S§=2 < minimum.

i
= 3v; — 3\ Z can be increas : .
7=30+ 30— 3N be increased by increasing x,,

SO/ViI'IQ Lin : ,
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but not x,. Therefore, step 1 chooses x, to

can be
\ <)
\ . ""

Therefore, the minimum ratio test indicates that xs is the leaving basic variable.

For step 3, with x 1'ep1.acing Xs as a basic variable, we perform elementary algebraic operations on
the current system of equations to reproduce the current pattern of coefficients of x5 (0, 0, 0, 1) as the
pew coefficients of x;. This yields the following new system of equations:

0 Z +%x4+ % =36 A Lo, = Xu X5
(1) , X3+ %x,; — %xs = 2 ~ ke
(2) X, +%x4 =6 ‘

1 1 3 ’Xr = (Xg-6
(3) X —3tet 36T 2

Therefore, the next BF solution is (xi, X2, X3, X4, xs) = (2, 6,2, 0,0), yielding.Z = 3. T? -?Eflzhghfu?g;
naliry test to this new BF solution, we use the current Eq. (0) to express Z in terms Of ]

onhasic variables:

Z=36—3 \/

—X4 — Xs5.
2

™~

i

fherefore, based on solution concept 6 in Sec. 4.1, the cur

' - al solution 18 Xy = < A2
In terms of the original form of the problem (no slack variables), the optimal solutl 1

which yields 7 = 3x, + 5x, = 36.

T~

T T vine the simplex method, W

rent BF solution must be optimal.
') Xn = 6s

¢ view the
e recommend that you now. v e
T T vivid demonstration 51m‘ '



*

=3 ‘ \. ' i
L 9, .
EN \'\) ‘ ‘ “‘, , 9V Y
\ | npiwmn\” ) k< 9\0\ A ) .
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Now compare Table 4.8 with the work done in Sec. 4.3 to V(tr“'v lhll" ”ltf-\‘t‘ (wo t‘orms Of the g; .
method really are equivalent. Then note how the algebraic form is supc.rmr for !Clll'lllllg the logi, '
the \implex method, but the tabular form organizes the work being done in a considerably mope convem'elm
and compact form, We generally use the tabular form from now on. o ‘

An additional example of applying the simplex method in tabular form is available to YOu in

. e O
Tutor. See the demonstration entitled Simplex Method—Tabular Form. Another example algo g inc| Ide
m the Solved Examples section for this chapter on the book's«website,
“ TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem
Coefficient of:
Basic — T gt
Reration Variable Eq. b4 Xy X Xy X4 Xs Side
b4 (0) 1 -3 -5 0 0 0
5 X3 M | o 1 o 1 0 0
Xy (2) 0 0O J2| o 1 0
Xg 3) 0 3 2 0 0 1
i \_\\‘ﬁ‘, — — . B ) \ ~
h z © | 1| -3 0 o0 g('\
Y. : X3 M | o 1o oy 0
— > X2 @ | o 0 10 %
Sk S Xg @ Jol sl o o o -
e S R I — - — i
: 4 () 1 0 0 3
~ \\ 0 36
N &R 2
— X3 M | o 0 0 1 A
2 3 3 ¢
Dn o — X 2 0 0 1
? S o 7 2 1 0 5 0 6
S X, B | o 1 o o 1 1
D ~Q < 3 3 2
<o ©
EXT TiE BREAKING IN THE SIMPLEX METHOD
You may have noticed in the preceding two sections that We never sqjq What to o ¢
rules of the simplex method do not lead to a clear-cut decision, because of eitl: ‘0. 't_ the varjoyg choice
ambiguities. We discuss these details now. “r ties or other simijlar
‘.

=" Tie for the Entering Basic Variable

x Step 1 of each iteration chooses the nonbasic variable having the pe

. : ) . gative coefficient With the

absolute value in the current Eq. (0) as the entering basic variable, Now Suppose thyt tWo or "lt largest

variables are tied for having the largest negative coefficient (in absolute terms). For ) 00“ Nonbasjc

occur in the first iteration for the Wyndor Glass Co. problem if its objective functiop Were. flls would

Z=3x1+ 3x, 50 that the initial Eq. (0) became 7 — 3% = 3x, = 0. How should this (;, be ,,,.0; f"f}é’cd to
The answer is that the selection between these contenders may be made arbitrarjpy, . "

; -' ; ape € Optip.
solution will be reached eventually, regardless of the tied variable chosen, and there is no o, "f‘r:md'
‘ > “\’”
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method for predicting in advance which choice will jead e

Lanens to reach the optimal s ; _ Ul ead there s . N ;
h"pp‘.“\ .( tarations O _l nl solution (2, 6) in three iterations S h? lhl\.c’.m.mplc‘ lh_c Mmpl.ex m;thod s
versus two iterations 1t v, is chosen, ations with x; as the initial entering basic variable, ,
[

rie for the Leaving Basic Variable—Degeneracy o

ow suppose that two or more basic var: :

N e bdM.L variables tie for being the leaving basic variable in step 2 of an

. ne 1s chosen? T ; ] ' -

of the following sequence of events that ¢ el “‘CQTCllcally it does, and in a very critical way, because
aeously as the entering basic . I(:t could occur. First, all the tied basic variables reach zero simul

€ s SIC variable is increas - ; -

. . . N eas
jeaving basic variable also will have 3 v ased. Therefore, the one or ones not chosen to be the

S valuc of gera B e alue of zero in the new BF solution. (Note that basic variables
Sution.) Second, if one of these dge“emle, am! the same term is applied to the corresponding BF
SC €generate basic variables retains its value of zero until it is chosen

ubsequent iteration : - .
aras 9 to be a leaving basic variable, the corresponding entering basic variable also

emain zero (since i ; .

$:Si;1ue of Z mu(st rem:i: al?rlllcf)}: e inereased without making the leaving basic variable negative), so
. ation. the simplex method anied' Third, if Z may remain the same rather than increase at each
e may then go around in a loop, repeating the same sequence of solutions

period_lcally rather than eventually increasing Z toward an optimal solution. In fact, examples have been
artificially constructed so that they do become entrapped in just such a perpetual ’loop.‘o

Fortunately, although a perpetual loop is theoretically possible, it has rarely been known to occur in
practical prf)blem.& If a loop were to occur, one could always get out of it by changing the choice of the
jeaving basic variable. Furthermore, special rules'! have been constructed for breaking ties so that such
loops are always avoided. However, these rules frequently are ignored in actual application, and they will

not be repeated here. For your purposes, just break this kind of tie arbitrarily and proceed without wor-
rying about the degenerate basic variables that result.

= TABLE 4.9 Initial simplex tableau for the Wyndor Glass Co. problem
without the last two functional constraints

Coefficient of:
Basic Right

Variable Eq. V4 X4 X2 X3 Side Ratio

—_
|
w
|
($)]
o

4 (0) 0 With x, =0 and x; increasing,
X3 (1 | o 1 [0] 1 4  None X3=4—1x; —Oxy = 4> 0.

No Leaving Basic Variable—Unbounded z

In step 2 of an iteration there is one other possible outcome that we have not yet discgssed, namgly,
that no variable qualifie; to be the leaving basic variable.'? This outcome would occur if the entering

basic variable could be increased indefinitely without giv%ng qegative yalues to any of tlhc:l .current t;)am.c
Variables. In tabular form, this means that every coefficient in the pivot column (excluding row ) is

€ither negative or zero.

[P cee J. A. . Hall and K. 1. M. McKinnon: “The Simplest Examples

! - 1 loop, o , , .
;Fhor futl}']ther information about cyclm%i aéourcllciit iztief\%‘z:s: EXll; AND Fails to Prevent Cycling,” Mathematical Programming, Series
ere the Simplex Method Cycles and (0D

B, 1001): 135-150, May 2004.
See R. Bland: “New Finite Pivoting Rules 10T able) cannot occur in ste

Ote that the analogous case (no entering basic V:l“ olution had been reached.
%P the alporithm first by indicating that an optimal 8

Simplex Method,” Mathematics of Operations Research, 2: 103-107, 1977.
for the SImP p | of an iteration, because the optimality test would
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: IS In Fig. 3.6. In thig ..

As llustrated i Table 4.9, this situation ari(;cs gl 111:5 (cj):)‘m;)lx)(l)cbldelr;pllfzjg ll)l:a:) gover(;oorl]( sglzne;ir:mc‘
the last two functional constraints of the Wyndor Glass L0. o e _ 0 arg
:::1 11‘[‘1\‘(‘“:1‘;\1‘1‘:1“:‘:‘6 model. Note n Fig. 3.6 how x; can be InCl(':ds’]e":dbl]r:d;f;)mtll:(;iyx(til;etr;:(l:)(l; r::l;rrieasm 7
indefinitely) without ever leaving the feasible region. Thcn note in Ta l; .mmimmzn e o ung‘bﬂxn
variable but the only coefficient mn the pivot column Is zero. Bgcaulse ¢ e ralo ! St uses g
coefficients that are greater than zero. there is no ratio 1o provide a l¢av1n}g]; .mlraints A :

The mterpretatior; of a tableau like the one showp in ".I‘a.ble 4.9 1s lhfl't t ]C Cco .[h ; 0]:1]0\[ preven,
the value of the objective function Z from increasing indefinitely, so the simplex method would st

P with

: : S iscovered a w :
the message that Z is unbounded. Because even linear programmmg h.a§ rll(ot S.hczeen madez:yTohf maklng
mfinite profits, the real message for practical problems is that a mistake has ! The moge|

probably has been misformulated, either by omitting relevant constraints or by stating them Incorrectly,
Alternatively, a computational mistake may have occurred.

Multiple Optimal Solutions

We mentioned in Sec. 3.2 (under the definition of optimal solution) that a problem can have more than

one optimal solution. This fact was illustrated in Fig. 3.5 by changing the objective function in the
Wyndor Glass Co. problem to Z = 3x, + 2x,, so that every point on the line segment between (2, 6) and
(4. 3) 15 optimal. Thus, all optimal solutions are a weighted average of these two optimal CPF solution

(X1, x2) =wy(2, 6) + wH(4, 3),

where the weights wy and w, are numbers that satisfy the relationships
Wi+ w, =] and wy > 0, 1) > 0.
For example, w, =% and w, =% give
_ 1 2 2.8 6 6 10
(. x) =12, 6)+2 4 3 =(— 8 ¢ —)=(—
1. X2) 3 ) 3 4. 3) 3 + 3 3 + 3 , 4

as one optimal solution.

where the weights are non-

nvex combination of thege solutions. Thyg, €very optimal solution

tion of (2, 6) and (4, 3).
ems with multiple optimal solutiopg.

in the example is a convex combina
This example is typical of prob]

convex combination of these optimal CPF solutions. C d form eve \
ton is a convex combination of the optimal BF solutions. T ETETY optima] gy
(Problems 4.5-5 and 4.5-6 guide you through the reasoning behind thjg conclusion )
The simplex method automatically stops after one optimal BF so]y(j
applications of linear programming, there are intangibl
be used to make meaningful choices between alternative optimal solutio
optimal solutions should be identif ied as well. As indicated above, this re
mal BF solutions, and then every optimal solution is a convex combinati

After the simplex method finds one optimal BF
if so, find them as follows:

n.s. In“such Cases, ¢ ese
quires hnding all the o, 0fhf_-‘1”
on of the optin er.0pl1~

ot
: . al BF g,
solution, you can detect if thege are gy Solutiopg
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