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le now are ready to begin studying the simplex method, a general procedure for solving linear pro 
gramming problems. Developed by the brilliant George Dantzig' in 1947, it has proved to be a 

remarkably efficient method that is used routinely to solve huge problems on today's computers. Except 
for its use on tiny problems, this method is always executed on a computer, and sophisticated software 
packages are widely available. Extensions and variations of the simplex method also are used to perform 
postoptimality analysis (including sensitivity analysis) on the model. 

Because linear programming problems arise so frequently for a wide variety of applications, the sim 
plex method receivesa tremendous amount of usage. During the early years after its development in 1947, 
computers were still relatively primitive, so only relatively small problems were being solved by this new 
algorithm. This changed rapidly as computers became much more powerful. Toward the end of the 20th 
century, problems with several thousand functional constraints and variables were being solved routinely. 
The progress since then has been remarkable. Both because of further explosions of computer power and 
great improvements in the implementation of the simplex method and its variants (such as the dual simplex 
method described in Sec. 8.1), this remarkable algorithm now can sometimes solve huge problems with 
millions (or even tens of millions) of functional constraints and variables. We will not attempt to delve 

into advanced topics that further enable its exceptional efficiency. 
This chapter describes and illustrates the main features of the simplex method. The first section intro 

duces its general nature, including its geometric interpretation. The following three sections then develop 

the procedure for solving any linear programming model that is in our standard form (maximization, all 

functional constraints in < form, and nonnegativity constraints on all variables) and has only nonnegative 

ight-hand sides b, in the functional constraints. Certain details on resolving ties are deferred to Sec. 4.5. 

Section 4.6 describes how to reformulate nonstandard forms of linear programming models to prepare for 

applying the simplex method. The subsequent two sections then present alternative methods for helping 

0 solve these reformulated models. Next, we discuss postoptimality analysis (Sec. 4.9), and describe the 

COmputer implementation of the simplex method (Sec. 4.10). Section 4.11 then introduces an alternative 

O the simplex method (the interior-point approach) for solving huge linear programming problems. 

Widely revered as perhaps the most important pioneer of operations research, George Dantzig is commonly referred to as the father 

of linear programming because of the development of the simplex method and many key subsequent contributions. The authors had 

the privilege of being his faculty colleagues in the Department of Operations Research at Stanford University for over 30 years. 

Dr. Dantzig remained professionally active right up until he passed away in 2005 at the age of 90. 
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4.1 THE ESSENCE OF THE SIMPLEX METHOD 

1ne simnplex method is an algebraic procedure However its underlying concepts are geometric. Under 

Sandn8 these geometric concepts provide a strong intuitive feeling for how the simplex metnod operates 

and what makes it so efficient. Therefore, before delving into algebraic details, we focus in this section 

on the big picture from a geometric viewpoint. 
To illustrate the general geometric concepts, we shall use the Wyndor Glass Co. example presented 

in Sec. 3.1. (Sections 4.2 and 4.3 use the algebra of the simplex method to solve this same example.) 

Section 5.1 will elaborate further on these geometric concepts for larger problems. 

To refresh your memory, the model and graph for this example are repeated in Fig. 4.1. The five 

constraint boundaries and their points of intersection are highlighted in this figure because they are the 

ue analysis. Here, each constraint boundary is a line that forms the boundary of what is per 

y ne corresponding constraint. The points of intersection are the corner-point solutions of the 

Problem. The five that lie on the corners of the feasible region-(0, 0), (0, 6), (2, 6), (4, 5), and (4, O 

ue he Corner-point feasible solutions (CPF solutions). [The other three-(0, 9), (4, 6), and (6, 0are 

called corner-point infeasible solutions.] 

(0, 9) 

(0, 6) 

(0, 0) 

3x + 2x, = 18 

general definitions. 

(2, 6) 

Feasible 

region 

Maximize Z= 3x + 5x2, 

subject to 
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(4, 6) 

X =4 

(4, 0) 

(4, 3) 

3xj + 2 S 18 

I>0, 
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2x, < 12 

(6, 0) 

I 0 

2x, = 12 

FIGURE 4.1 
Constraint boundaries and corner-point solutions for the Wyndor Glass Co. problem. 

In this example, each corner-point solution lies at the intersection of two constraint boundaries. (For a 

linear programming problem with n decision variables, each of its corner-point solutions lies at the 

section of n constraint boundaries.) Certain pairs of the CPF solutions in Fig. 4.1 share a 
constraint bound-

ary, and other pairs do not. It will be important to distinguish between these cases by using the following 

2Although a corner-point solution is defined in terms of n constraint boundaries whose intersection gives this 
solution, it also is 

noible that one or more additional constraint boundaries pass through this same point. 



For any lincar programming problem with n decision variables, two CPF solutions are adjacent to each 
other if they share n-1 constraint boundaries. The two adiacent CPF solutions are connected by a line 
segment that lics on these same shared constraint boundaries. Such a line segment is referred to as an edge 
of the feasible region. 
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Since n =2 in the Cxample, two of its CPF solutions are adiacent if they share one constraint boundary; 
for example, (0, 0) and (0, 6) are adjacent because they share the x =0 constraint boundary. The feasible 

negion in Fig. 4.1 has five edges, consisting of the five line segments forming the boundary of this region. 
Note that two edges emanate from each CPF solution. ThuS, cach CPF solution has two adjacent CPF solutions 
icach lying at the other end of one of the two edges), as enumerated in Table 4.1. (In each row of this table. 
the CPF solution in the first column is adjacent to each of the two CPF solutions in the second column. but 
the two CPF solutions in the second column are not adjacent to each other.) 

TABLE 4.1 Adjacent CPF solutions for each CPF 
solution of the Wyndor Glass Co. problem 

CPF Solution 

(0, 0) 

Solving the Example 

(0, 6) 
(2, 6) 
(4, 3) 
(4, 0) 

Its Adjacent CPF Solutions 

(0, 6) and (4, O) 
(2, 6) and (0, O) 
(4, 3) and (0, 6) 
(4, O) and (2, 6) 
(0, 0) and (4, 3) 

One reason for our interest in adjacent CPF solutions is the following general property about such 

solutions, which provides a very useful way of checking whether a CPF solution is an optimal solution. 

Optimality test: Consider any linear programming problem that possesses at least one optimal 

solution. If a CPF solution has no adjacent CPF solutions that are better (as measured by Z), 

then it must be an optimal solution. 

Thus, for the example, (2, 6) must be optimal simply because its Z= 36 is larger than Z = 30 for (0, 6) 

and Z = 27 for (4, 3). (We will delve further into why this property holds in Sec. 5.1.) This optimality 

test is the one used by the simplex method for determining when an optimal solution has been reached. 

Now we are ready to apply the simplex method to the example. 

Here is an outline of what the simplex method does (from a geometric viewpoint) to solve the Wyndor 

Glass Co. problem. At each step, first the conclusion is stated and then the reason is given in parentheses. 

(Refer to Fig. 4.1 for a visualization.) 
Initialization: Ch00se (0, 0) as the initial CPF solution to examine. (This is a convenient choice 

Decause no calculations are required to identify this CPF solution.) 

Optimality Test: Conclude that (0, 0) is not an optimal solution. (Adjacent CPF solutions are better.) 

lteration 1: Move to a better adjacent CPF solution, (0, 6), by performing the following three steps. 

L. Considering the two edges of the feasible region that emanate from (0, 0), choose to move along the edge 

that leads up the x, axis. (With an objective function of Z= 3x +5xz, moving up theX, axis increases Z 

at a faster rate than moving along the x axis.) 

bo Stop at the first new constraint boundary: 2x 12. [Moving farther in the direction selected in sten 1 

leaves the feasible region; e.g., moving to the second new constraint boundary hit when moving in that 

direction gives (0, 9), which is a corner-point infeasible solution.] 
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3. Solve tor the intersection of the new set of constraint boundaries: (0. 6). (The equatios for these con 

straint boundaries, x =0 and 2r, = 12, immediately yield this solution.) 
Optimali Test: Conclude that (0, 6) is not an optimal solution. (An adjacent CPF solution is better.) 

c MOve to a better adjacent CPE solution. (2. 6). by performing the following three steps: 

Consideing the two edges of the feasible reeion that emanate from (0, 6), choose to move along the 

at teads to the right. (Moving along this edee increases Z. whereas backtracking to move back 

down the a; axis decreases Z.) 
op at the tirst new constraint boundary encountered when moving in that direction: 3X| + 2x = 18. 

(MOVing farther in the direction selected in step 1 leaves the feasible region.) 

3. Solve for the intersection of the new set of constraint 

boundaries: (2, 6). (The equations for these constraint 
boundaries, 3x, + 21, = 18 and 2x, = 12, immediately 
yield this solution.) 

Optimality Test: Conclude that (2, 6) is an optimal solu 
tion, so stop. (None of the adjacent CPF solutions are better.) 

This sequence of CPF solutions examined is shown in 

Fig. 4.2, where each circled number identifies which iteration 

obtained that solution. (See the Solved Examples section for 

this chapter on the book's website for another example of 

how the simplex method marches through a sequence of CPF 
solutions to reach the optimal solution.) 

Now let us look at the six key solution concepts of the 

simplex method that provide the rationale behind the above 
steps. (Keep in mind that these concepts also apply for solv 
ing problems with more than two decision variables where 

a graph like Fig. 4.2 is not available to help quickly find an 
optimal solution.) 

The Key Solution Concepts 

(0, 6) 

(0, 0) 

Z=30 (2.6) 

2 

(0) 

Feasible 
region 

Z=0 

FIGURE 4.2 

-Z=36 

(4, 3) 

The next solution concept defines the flow of the simplex method. 

(4, 0) 

Z=27 

Z= 12 

This graph shows the sequence of CPF 
solutions (0, , ) examined by the simplex 
method for the Wyndor Glass Co. problem. 
The optimal solution (2, 6) is found after just 
three solutions are examined. 

The first solution concept is based directly on the relationship between optimal solutions and CPF solutions 
given at the end of Sec. 3.2. 

Solution concept 1: The simplex method focuses solely on CPF solutions. For any problem with 
at least one optimal solution, finding one requires only finding a best CPF solution. 

Since the number of feasible solutions generally is infinite, reducing the number of solutions that need 0 be examined to a small finite number (just three in Fig. 4.2) is a tremendous simplification. 
Solution concept 2: The simplex method is an iterative algorithm (a systematic solution procedue that keeps repeating a fixed series of steps, called an iteration, until a desired result has Deel obtained) with the following structure. 

SThe only restriction is that the problem must possess CPF solutions. This is ensured if the feasible region is bounoc 



Initialization: 

Optimality test: 

If no 

-Iteration: 

If yes 

Solving Linear programming Problems: The Simplex Method 
Set up to start iterations, including finding an initial CPF solution. 

Is the current CPF solution optimal? 
Stop. 

Performn an iteration to find a better CPF solution. 

When the example was solved, note how this flow diagram was followed through two iterations until an optimal solution was found. 

We next focus on how to get started. 
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Solution concept 3: Whenever possible, the initialization of the simplex method chooses the origin (all decision variables equal to zero) to be the initial CPF solution. When there are too many decision variables to find an initial CPF solution graphically, this choice eliminates the 
need to use algebraic procedures to find and solve for an initial CPF solution. 

Choosing the origin commonly is possible when all the decision variables have nonnegativity constraints, 
hecause the intersection of these constraint boundaries yields the origin as a corner-point solution. This 
solution then is a CPF solution unless it is infeasible because it violates one or more of the functional 
constraints. If it is infeasible, special procedures described in Secs. 4.6�4.8 are needed to find the initial 
CPF solution. 

The next solution concept concerns the choice of a better CPF solution at each iteration. 

Solution concept 4: Given a CPF solution, it is much quicker computationally to gather infor 
mation about its adjacent CPF solutions than about other CPF solutions. Therefore, each time the 
simplex method performs an iteration to move from the current CPF solution to a better one, 

always chooses a CPF solution that is adjacent to the current one. No other CPF solutions are 

considered. Consequently, the entire path followed to eventually reach an optimal solution is along 

the edges of the feasible region. 

The next focus is on which adjacent CPF solution to choose at each iteration. 

Solution concept 5: After the current CPF solution is identified, the simplex method examines 

each of the edges of the feasible region that emanate from this CPF solution. Each of these edges 

leads to an adjacent CPF solution at the other end, but the simplex method does not even take 

the time to solve for the adjacent CPF solution. Instead, it simply identifies the rate of improve 

ment in Z that would be obtained by moving along the edge. Among the edges with a positive 

Tate of improvement in Z, it then chooses to move along the one with the largest rate of improve 

ment in Z. The iteration is completed by first solving for the adjacent CPF solution at the other 

Cnd of this one edge and then relabeling this adjacent CPF solution as the current CPF solution 

Tor the optimality test and (if needed) the next iteration. 

de Trst iteration of the example, moving from (0, 0) along the edge on the x axis would give a rate 

provement inZ of 3 (Z increases by 3 per unit increase in x), whereas moving along the edge on 

the X axis would give a rate of improvement in Z of 5 (Z increases by 5 per unit increase in x), so the 

decision is made to move along the latter edge. At the second iteration, the only edge emanating from 
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(0, 6) that would yicld a positive rate of improvement in Z is the edge leading to (2, 6), so the decision 

is made to move next along this cdge. 

The final solution concept clarifies how the optimality test is performed efficiently. 

Solution concept 6: Solution concept 5 describes how the simplex method examines each of the 

edges of the feasible region that emanate from the current CPF solution. This 
examination of an 

edge leads to quickly identifying the rate of improvement in Z that would be obtained by moving 

along this edge toward the adjacent CPF solution at the other end. A positive rate of improvement 

in Z implies that the adjacent CPF solution is better than the current CPF solution, whereas a 

negative rate of improvement in Z implies that the adjacent CPF solution is worse. Therefore, the 

optimality test consists simply of checking whether any of the edges give a positive rate of 

Improvement in Z. If none do, then the current CPF solution is optimal. 

In the example, moving along either edge from (2, 6) decreases Z. Since we want to maximize Z, this fact 

immediately gives the conclusion that (2, 6) is optimal. 

T you would like to see another example illustrating the geometric concepts underlying the simplex 

method, one is provided in the Solved Examples section for this chapter on the book's website. 

4.2 SETTING UP THE SIMPLEX METHOD 

Section 4.1 stressed the geometric concepts that underlie the simplex method. However, this algorithm 

normally is run on a computer, which can follow only algebraic instructions. Therefore, it is necessary 

to translate the conceptually geometric procedure just described into a usable algebraic procedure. In 

this section, we introduce the algebraic language of the simplex method and relate it-to the concepts 

of the preceding section. We are assuming (prior to Sec. 4.6) that we are dealing with linear pro 

gramming models that are in our standard form (as defined at the end of the introduction to this 

chapter). 
The algebraic procedure is based on solving systems of equations. Therefore, the first step in setting 

up the simplex method is to convert the funçtional inequality constraints into equivalent equality con 

straints. (The nonnegativity constraints are left as inequalities because they are treated separately.) "This 

conversion is accomplished by introducing slack variables. To illustrate, consider the first functional 

constraint in the Wyndor Glass Co. example of Sec. 3.1, 

X <4. 

The slack variable for this constraint is defined to be 

X=4- X|, 

which is the amount of slack in the left-hand side of the inequality. Thus, 

Given this equation, x s4 if and only if 4 - x =X;>0. Therefore, the original constraint 
<4 is 

entirely equivalent to the pair of constraints 

X +x,= 4 and X3>0. 

programming model for the example (shown below on the left) can now be replaced by the 
equivalent Upon the introduction of slack variables for the other functional constraints, the 

original linear 

model (called the augmented form of the model) shown below on the right: 



Original Form of the Model 

Maximize 

subject to 

and 

Solving Linear Programming Problems: The Simplex Method 113 

A>0, 

3x, + 2; 

C 

< 4 

2r, < 12 

< 18 

(1) 

Sec. 5.1. 

subject to 

(2) 

Augmented Form of the Model 

(3) 

Maximize 7=3x + 5x. 

and 

3x + 2r 

x, > 0. 

2x1 

= 4 

= 12 

Although both forms of the model represent exactly the same problem, the new form is much more 

anvenient for algebraic manipulation and for identification of CPF solutions. We call this the aug 

mented form of the problem because the original form has been augmented by some supplementary 

variables needed to apply the simplex method. 

+xy= l8 

for j = 1. 2, 3, 4. 5. 

If a slack variable equals 0 in the current solution, then this solution lies on the constraint boundary 

for the corresponding functional constraint. A value greater than 0 means that the solution lies on the 

fensible side of this constraint boundary, whereas a value less than 0 means that the solution lies on the 

infeasible side of this constraint boundary. A demonstration of these properties is provided by the demon 

stration example in your OR Tutor entitled Interpretation of the Slack Variables. 

A basic solution is an augmented corner-point solution. 

The terminology used in Sec. 4.1 (corner-point solutions, etc.) applies to the original form of the 

Droblem. We now introduce the corresponding terminology for the augmented form. 

An augmented solution is a solution for the original variables (the decision variables) that has been 

augmented by the corresponding values of the slack variables. 

For example, augmenting the solution (3, 2) in the example yields the augmented solution (3, 2, 1, 8, 5) 

because the corresponding values of the slack variables are x, = 1, X4 =8, and xs =5. 

To illustrate, consider the corner-point infeasible solution (4, 6) in Fig. 4.1. Augmenting it with the result 

ing values of the slack variables x, = 0, x4 =0, and x, = -6 yields the corresponding basic solution (4, 6. 

0, 0, -6). 

A basic feasible (BF) solution is an augmented CPF solution. 

The fact that corner-point solutions (and so basic solutions) can be either feasible or infeasible implies 

he following definition: 

inus, the CPF solution (0, 6) in the example is equivalent to the BF solution (0, 6, 4, 0, 6) for the problem 

In augmented form. 
Ine only difference between basic solutions and corner-point solutions (or between BF solutions and 

SOTutions) is whether the values of the slack variables are included. For any basic solution, the cor 

Ponding corner-point solution is obtained simply by deleting the slack variables. Therefore, the geomet 

algebraic relationships between these two solutions are very close, as we will'describe further in 

The slack variables are not shown in the objective function because the coefficients there are 0. 
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Because the terms basic solution and basic feasible solution are very important parts of the standard 

vocabulary of linear programming, we now need to clarify their algebraic properties. For the augmented 

form of the example, notice that the system of functional Constraints has 5 variables and 3 equations, so 

Number of variables - number of equations = 5-3= 

This fact gives us 2 degrees of freedom in solving the system, Since any two variables can be chosen to be set 

equal to any arbitrary value in order to solve the three equations in terms of the remaining three variables. The 

simplex method uses zero for this arbitrary value. Thus, two of the variables (called the nonbasic variables) 

are set equal to zero, and then the simultaneous solution of the three equations for the other three variables 

(called the basic variables) is a basic solution. These properties are described in the following general 

definitions. 
A basic solution has the following properties: 

1. Each variable is designated as either a nonbasic variable or a basic variable. 

bo The number of basic variables equals the number of functional constraints (now equations). Therefore, 

the number of nonbasic variables e�uals the total number of variables minus the number of functional 

constraints. 

3. The nonbasic variables are set equal to zero. 

4. The values of the basic variables are obtained as the simultaneous solution of the system of equations 

(functional constraints in augmented form). (The set of basic variables is often referred to as the basis.) 

S. If the basic variables satisfy the nonnegativity constraints, the basic solution is a BF solution. (Remember 

that BF is an abbreviation for basic feasible.) 

To illustrate these definitions, consider again the BF solution (0, 6, 4, 0, 6). This solution was obtained 

before by augmenting the CPF solution (0, 6). However, another way to obtain this same solution is to 

choose x, and x, to be the two nonbasic variables, and so the two variables are set equal to zero. The three 

equations then yield, respectively, x, =4, X, =6, and x, =6 as the solution for the three basic variables, 

as shown below (with the basic variables in bold type): 

(1) 
(2) 
(3) 

2x2 
3x + 2x2 

+3 
+x4 

= 4 
= 12 

2. 

+xs = 18 

X =0 and x =0 so 

X; =4 

Is =6 

Because all three of these basic variables are nonnegative, this basic solution (0, 6, 4, 0, 6) is indeed a 

BF solution. The Solved Examples section for this chapter on the book's website includes another example 

of the relationship between CPF solutions and BF solutions. 

Just as certain pairs of CPF solutions are adjacent, the corresponding pairs of BF solutions als0 are 

said to be adjacent. Here is an easy way to tell when two BF solutions are adjacent. 

Two BF solutions are adjacent if all but one of their nonbasic variables are the same. This implies that all 
but one of their basic variables also are the same, although perhaps with different numerical values. 

the augmented form of a linear programming model. 

Consequently, moving from the current BF solution to an adjacent one involves switching one variable 

from nonbasic to basic and vice versa for one other variable (and then adjusting the values of the basic 

variables to continue satisfying the system of equations). 

SThis method of determining the number of degrees of freedom for a system of equations is valid as long as the system 
does not 

include any redundant equations. This condition always holds for the system of equations formed from the functional 
constraints in 



To illustrate adjacent BF solutior consider one paf a cent CPF solutions in Fig. 4.1: (0, 0) and 
0.6). Their augmented solutions, (00, 4, 12, 18) and (06, 4, 0. 6), automatically are adjacent BF solu 
tions. However. you do not need to look at Fig. 4.1 to draw this conclusion. Another signpost is that their 

nonbasic variables, (1 ) and (x|, X), are the same with just the one exception has been replaced 
by X4 Conscquently, moving from (0, 0, 4, 12, 18) to (0, 6, 4. 0, 6 involves switching x, from nonbasic 

When we deal with the problem in augmented form, it is convenient to consider and manipulate the 
objective function equation at the same time as the new constraint equations. Therefore, before we start 

the simplex method, the problem needs to be rewritten once again in an equivalent way: 

and 

Maximize 

subject to 

(0) 
(1) 
(2) 
(3) 

j>0, 

Z-3x1 -5x) 

4.3 
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2x, 
3x + 2x 

+X3 
+4 

for j = 1, 2,...,5. 

a. If so, stop. 

= 0 
= 4 

It is just as if Eq. (0) actually were one of the original constraints; but because it already is in equality 

form, no slack variable is needed. While adding one more equation, we also have added one more unknown 

(Z) to the system of equations. Therefore, when using Eqs. (1) to (3) to obtain a basic solution as described 

above, we use Eq. (0) to solve for Z at the same time. 

= 12 

Somewhat fortuitously, the model for the Wyndor Glass Co. problem fits our standard form, and all 

its functional constraints have nonnegative right-hand sides b,. If this had not been the case, then additional 

adjustments would have been needed at this point before the simplex method was applied. These details 

are deferred to Sec. 4.6, and we now focus on the simplex method itself. 

+x5= 18 

THE ALGEBRA OF THE SIMPLEX METHOD 

b. If not, perform an iteration. 

Building on the descriptions in the two preceding sections, we now can sketch a conceptual outline of the 

simplex method from either a geometric or algebraic viewpoint. 

Conceptual Outline of the Simplex Method 

lineat 

1. Perform initialization to identify the initial solution for starting the simplex method. 

k Apply the optimality test to determine if the current solution is optimal. 

6. Return to the optimality test. 

3. Step l of an iteration: Determine which direction in which to move to get to the next solution. 

4. Step 2 of an iteration: Determine where to stop to reach this next solution. 

5. Step 3 of an iteration: Solve for this new solution. 

to basic and vice versa for x. 



Initialization 
The choice of x and x, to be the nonbasic variables (the variables set egual to zero) for the initial BF solu tion is based on solution concept 3 in Sec. 4.1. This choice eliminates the work required to solve for the basic variables (4, d4, xs) from the following system of equations (where the basic variables are shown in bold type ): 

(1) 

(2) 
(3) 

2x2 
3x + 2x, 
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+x3 
+X4 

= 4 

= 12 

+*s= 18 

X =0 and x, =0 so 

Thus, the initial BF solution is (0, 0, 4, 12, 18). 

I3= 4 

X4 = 12 
X's = 18 

Notice that this solution can be read immediately because each equation has just one basic variable, which has a coefficient of 1, and this basic variable does not appear in any other equation. You will soon see that when the set of basic variables changes, the simplex method uses an algebraic procedure (Gauss jan elimination) to convert the equations to this same convenient form for reading every subsequent BF solution as well. This form is called proper form from Gaussian elimination. 
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Optimality Test 
The objective function is 

the coeff ef hese 
Introduction to Operations Research 

Z= 3x + 5xz, 
so Z= 0 for the initial BF solution. Because none of the basic variables (3, X4, Xs) have a nonzero oot 
ficient in this objective function, the coefficient of each nonbasic variable (x, x) gives the rate of improve-ment in Z if that variable were to be increased from zero (while the values of the basic variables are adjusted to continue satisfying the system of equations)." These rates of improvement (3 and 5) are poci. 
tive. Therefore, based on solution concept 6 6 in Sec. 4.1, we conclude that (0, 0, 4, 12, 18) is not optimal. For each BF solution examined after subsequent iterations, at least one basic variable has a nonzem 
coefficient in the objective function. Therefore, the optimality test then will use the new Eq. (0) to rewrite the objective function in terms of just the nonbasic variables, as you will see later. 

Deterrñining the Direction of Movement (Step 1 of an Iteration) 
Increasing one nonbasic variable from zero (while adjusting the values of the basic variables to continue satisfying the system of equations) corresponds to moving along one edge emanating from the current CPF solution. Based on solution concepts 4 and 5 in Sec. 4.1, the choice of which nonbasic variable to increase is made as follows: 

nen-bone (0) Sahiase 
non-bascaiable 

hetohmine e di. 

Increase x? 
Increase x? 

(1) 
(2) 
(3) 

Z= 3x +5x, 

5>3. so choose x, to increase. 
As indicated next,we call x, the entering basic variable for iteration 1. 

as shown on the right. 

Rate of improvement in Z =3. 

Determining Where to Stop (Step 2 of an Iteration) 

their signs. 

Rate of improvement in Z=5. 

At any iteration of the simplex method, the purpose of step l is to chÓose one nonbasic variable to increase from zero (while the values of the basic variables are adjusted to continue satisfying the system aof equations). Increasing this nonbasic variable from zero will onvert it to a basic variable for the next 

moveent 

alqunaie 

requirement to satisfy the functional constraints in augmented form 

BE Solution. Therefore, this variable is called the entering basic variable for the current iteration (because it is entering the basis). 

Step 2 addresses the question of how far to increase the entering basic variable x, before stopping. Increasing x} increases Z, so we want to go as far as possible without leaving the feasible region. The 

2x2 
3x + 2x2 

ing x, (while keeping the nonbasic variable 'x = 0) changes the values of some of the basic variables 

fane' 

+4 

= 4 

= 12 

+*s = l8 

*,= 4 

(0, o) 

J4= 12 - 2r 
Is = 18 - 2r). 

(shown below) means that increas 
so Wite he 

n9atia Bes 

'Note that this interpretation of the coefficients of the x, variables is bused on these variables being on 

baic 
"Zeainq 

the riglh-hand side, 
Z=3x + 5x,. When these variables are brought to the left-hand side for Eq. (0), Z-3-5i, = 0, the nonzero 

coefticients change 



The other requirement for feasibility is that all the variables be nonnegative. The non-basic variables 
(including the entering basic variable) are nonnegative, but we need to check how far x, can be increased 

Nithout violating the nonnegativity constraints for the basic variables. 
I;=4>0 

I,= 12 -2 12 =6 
I = 18 - 2r >0 ’X, < 

Convert 

’ no upper bound on x. 
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cause t to become negative, which would violate feasibility. 

Nonbasic variables: 
Basic variables: 

2 

18 

m can be increased just to 6, at which point x, has dropped to 0. Increasing x, beyond 6 would 

=9. 

t- minimum. 

These calculations are referred to as the minimum ratio test. The objective of this test is to determine 

which basic variable drops lo zero first as the entering basic variable is increased. We can immediately 
nule out the basic variable in any equation where the coefficient of the entering basic variable is zero or 
negative, SInce such a basic variable would not decrease as the entering basic variable is increased. This 

is what happened with 3 in Eq. (1) of the example.] However, for each equation where the coefficient of 
he entering basic variable is strictly positive (> 0), this test calculates the ratio of the right-hand side to 
the coefficient of the entering basic variable. The basic variable in the equation with the minimum ratio 
s the one that drops to zero first as the entering basic variable is increased. 

At any iteration of the simplex method, step 2 uses the minimum ratio test to determine which basic vari 
sable drops to zero first as the entering basic variable is increased. Decreasing this basic variable to zero will 

to a nonbasic variable for the next BF solution. Therefore, this variable is called the leaving basic 
variable for the current iteration (because it is leaving the basis). 

(0) 

us, x4 is the leaving basic variable for iteration 1 of the example. 

(1) 

iolving for the New BF Solution (Step 3 of an Iteration) 

(2) 
(3) 

2 

ncreasing x, =0 to x, = 6 moves us from the initial BF solution on the left to the new BF solution on 

he right. 

Z-3x - 5x) 

Min 

2x2 

Initial BF solution 

iim otio dakemined 

x =0, Xy =0 
X3 =4, x4 = 12, 

Ratio Tat: 

aic sas" o enterinP 

Xs = 18 

purpOse of step 3 is to convert the system of equations to a more convenient form (proper form from 

Gaussian elimination) for conducting the optimality test and (if needed) the next iteration with this new 

SOlution. In the process. this form also will identify the values of x; and xs for the new solution. 

= 4 

= 12 
+*s = 18. 

old type (with Z playing the role of the basic variable in the objective function equation): 

New BF solution 

ere again is the complete original system of equations, where the new basic variables are shown in 

X =0, N4 =0 
X3=?, Xy =6, Xs =? 

the 

elinin 
step 
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and x, we need to perform some elementary algebraic operations to reproduce the current pattern 
Thus, x, has replaced x, as the basic variable in Eq. (2), To solve this system of cquations 

coefficients of x (0, 0, 1, 0) as the new coefficients of x. We can use either of two types of 

elernenta algebraic operations: 

* Alway 

1. Multiply (or divide) an cquation by a nonzero constant. 

2. Add (or subtract) a multiple of one cquation to (or from) another equation. 

Orespectively. To turn thc coefficient of 2 in Eq. (2) into 1, we use the frst type of elementary aloek 
operation by dividing Eq. (2) by 2 to obtain 

To prepare for performing these operations, note that the coefficients of xy in the above system cquations are -5, 0, 2, and 2, respectively, whereas we want these coefficients to become 0,0, 1. and 

(2) 

To turn the coefficients of -5 and 2 into zeros, we need to use the second type of elementary algebraic operation. In particular, we add 5 times this new Eq. (2) to Eq. (0), and subtract 2 times this new Ea (, from Eq. (3). The resulting complete new system of equations is 
(0) 

(1) 

(2 

(3) 

Z-3x1 

3x1 

=30 

4 

6 

X4 txs= 6. 

Since x, =0 and x4 =0, the equations in this form immediately yield the new BF solution, (x, X, X3, X4, 
X) = (0, 6, 4, 0, 6), which yields Z =30. This procedure for obtaining the simultaneous 

Z= 30 + 3x, -J 

Gauss-Jordan method of elimination, or Gaussian elimination for short.' The key concept for this method 

is the use of elementary- algebraic operations to reduce the original system of equations to proper form 

from Gaussian elimination, where each basic variable has been eliminated from all but one equation (its 

9atable 

equation) and has a coefficient of +1 in that equation. 
Optimality Test for the New BF Solution 

solution of a system of linear equations is called the 

The current Eq. (0) gives the value of the objective function in terms of just the current nonbasic variables: Increasing either of these nonbasic variables from zero (while adjusting the values of the basic variables 

to continue satisfying the system of equations) would result in moving toward one of the two adjacent BF 

solutions, Because x, has a positive coefficient, increasing x, would lead to an adjacent BF solution that 

is better than the current BF solution, so the current solution is not optimal 

Actually, there are some technical differences between the Gauss-Jordan method of elimination shall not make this distinction. and 

Gaussian elimination, but we 



teration2 the Resulting Optimal Solution 
Sine Z=, 

increased (With 4 0): 

and 

For step 2, the current system of equations yields the following conclusions about how far x can be 

1;=4- >0 

I=6>0 

(0) 

r=6-3x >0 ’x s=2 

(1) 
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(2) 

(3) 

’X| S=4. 
1 

’ no upper bound on X. 

Therefore, the minimum ratio test indicates that xs is the leaving basic variable. 

2 

For step 3, with x replacing Xs as a basic variable, we perform elementary algebraic operations on 
the cuurrent system of equations to reproduce the current pattern of coefficients of xs (0, 0, 0, 1) as the 
new coefficients of X1. This yields the following new system of equations: 

3 

3 

t- minimum. 

Z= 36- � Xs. 

+4 t Xs =36 

1 
*3 +4-X5= 2 

(a) 

= 6 

-t= 2. 

121 

(o, oo,), 

Therefore, the next BF solution is (, X, Xa, Xa, X) = (2, 6, 2, 0, 0), yielding Z = 36. To apply the opti 

aliry test to this new BF solution, we use the current Eq. (0) to express Z in terms of just the current 

onbasic variables: 

1Creasing either xA OI X5 would decrease Z, so neither adjacent BF solution is as good as the current one. 

elore, based on solution concept 6 in Sec. 4.1, the current BF solution must be optimal. 

terms of the original form of the problem (no slack variables), the optimal solution is x =2, x;=6, 

which yields Z = 3x + 5x) = 36. 
ing the simplex method, we recommend that you now view the 

his yivid demonstration simul 

-30 + 311-~4 Z can be increased by increasing X1, but not xA. Therefore, step 1 chooses x to 
be the entering basic variable. 



N 
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Now ompare able 4.8 with the work done in Sec. 4.3 to verify that these two forms of the sin, method really are equialent. Then note how the algebraic form is superior for learning the logic beha. 

the simple method, but the tabular form organizes the work being done in a considerably more covenien, An additional example of applying the simplex nethod in tabular form is available to you in the OR 
Tutor. See the demonstration entitled Simplex Method-Tabular Form. Another example also is included 

and compact form. We geneally use the 

in the Solved Examples section for this chapter on the book's website. 

4.5 

TABLE 4.8 Conmplete set of simplex tableaux for the Wyndor Glass Co. problem 

teration 

1 

2 

Basic 
Variable 

7 

X 

X 

X3 

X 

X 

XE 

X2 

Eq. 

(0) 
(1) 
(2) 
(3) 

(0) 

(1) 

(2) 

(3 

(0) 

(1) 

(2) 

(3) 

tabular forn from noW on. 

ambiguities. We discuss these details now. 

1 

Tie for the Entering Basic Variable 

1 

X 

-3 

-3u 

1 

10 

3 

1 

Coefficlent of: 

-5 

1 

2 

TIE BREAKING IN THE SIMPLEX METHOD 

1 

1 

1 

-1 

3 

2 

1 

3 

1 

1 

Oo-o 

2 

3 

XA 

occur in the first iteration for the Wyndor Glass Co. problem if its objective 

1 

1 

1 

The answer is that the selection between these contenders may be made 

X 

o oo 

1 

Rlght 

2 

6 

Slde 

2 

30 

12 

4 

18 

36 

4 

6 

You may have noticed in the preceding two sections that we never said what to do if the various choice 

rules of the simplex method do not lead to a clear-cut decision. because of either ties or other similar 

Step 1 of each iteration chooses the nonbasic variable having the negative coefficient with the largest 
absolute value in the current Eq. (0) as the entering basic variable. Now suppose that two or more nonbasic 
variables are tied for having the largest negative coefficient (in absolute terms). For example, this would 

van i) 

Z= 3x,+ 3x,, so that the initial Eq. (0) became Z - 3x - 3x, =0. How should this tie be broken? 
function were changed to 

solution will be reached eventually, regardless of the tied variable chosen, and there is no convenient 
arbitrarily. The optimal 



method for predicing in advánce which choice will lead there sOOner. In this example, the simplex method ens to reach the optimal solution (2, 6) in three iterations with x as the initial entering basic variable, versus two iterations if x; is chosen. 

Tie for the Leaving Basic Variable--Degeneracy Naw suppose that two or more basic variables tie for being the leaving basic variable in step 2 of an iteration. Does it matter which one is chosen? Theoretically it does, and in a very critical way, because the following sequence of events that could occur. First. all the tied basic variables reach zero simul roneously as the entering basic variable is increased. Therefore, the one or ones not chosen to be the oving basic variable also will have a value of zero in the new BF solution. (Note that basic variables with a value of zero are called degenerate, and the same term is applied to the corresponding BF oolution.) Second, if one of these degenerate basic varjables retains its value of zero until it is chosen at a subsequent iteration to be a leaving basic variable, the corresponding entering basic variable also must remain zero (Since it cannot be increased without making the leaving basic variable negative), so the value of Z must remain unchanged. Third, if Z may remain the same rather than increase at each 
iteration, the simplex method may then go around in a loop, repeating the same sequence of solutions 
periodically rather than eventually inçreasing Z toward an optimal solution. In fact, examples have been 
artificially constructed so that they do become entrapped in just such a perpetual loop. 

TABLE 4.9 Initial simplex tableau for the Wyndor Glass Co. problem 
without the last two functional constraints 

Basic 

Fortunately. although a perpetual loop is theoretically possible, it has rarely been known to occur in 
practical problems. If a loop were to occur, one could always get out of it by changing the choice of the 
jeaving basic variable. Furthermore, special rules" have been constructed for break1ng ties so that such 
loops are always avoided. However, these rules frequently are ignored in actual application, and they will 
not be repeated here. For your purposes, just break this kind of tie arbitrarily and proceed without wor 
rying about the degenerate basic variables that result. 

Variable 

Soldog Linear Programmiht broblemsthe Simplex Method 

N 

X 

Eq. 

(O) 
(1) 

N 

either negative or zero. 

1 

B, 100(1): 135-150, May 2004. 

Coefficient of: 

X4 

-3 

1 

X 

127 

-5 

No Leaving Basic Variable--Unbounded Z 

Right 
Side Ratio 

16 

None 

In step 2 of an iteration, there is one other possible outcome that we have not yet discussed, namely. 

Lhat no variable qualifies to be the leaving basic variable.'� This outcome would occur if the entering 

Dasic variable could be increased indefinitely without giving negative values to any of the current basic 

variables. In tabular form, this means that every coefficient in the pivot column (excluding row 0) is 

With x =0 and X, increasing, 
X3 = 4- 1x1�OxX,= 4> 0. 

For further Information about cycling around a perpetual loop, see J. A. J. Hall and K. I. M. McKinnon: "The Simplest Examples 

Where the Simplex Method Cycles and Conditions Where EXPAND Fails to Prevent Cycling," Mathematical Programming, Series 

See R. Bland: "New Finite Pivoting Rules for the Simplex Method," Mathematics of Operations Research, 2: 103-107, 1977. 

Note that the analogous case (no entering basic variable) cannot occur in step l of an iteration, because the optimality test would 

Nop the algorithm first by indicating that an optimal solution had been reached. 
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the last two functional constraints of the Wyndor Glass Co. problem have been overlooked and so are 

As illustrated in Table 4.9, this situation arises in the example displayed in Fig. 3.6. In this example, 
not included in the model. Note in Fig. 3.6 how x can be increased indefinitely (thereby increasing 2 indefinitely) without ever leaving the feasible region. Then note in Table 4.9 that x, is the entering basic variable but the only coefficient in the pivot column is zero. Because the minimum ratio test uses only coefficients that are greater than zero, there is no ratio to provide a leaving basic variable. 

The interpretation of a tableau like the one shown in Table 4.9 is that the constraints do not prevent the value of the objective function Z from increasing indefinitely, so the simplex method would stop with 
the message that Z is unbounded. Because even linear programming has not discovered a way of making mfinite profits, the real mesage for practical problems is that a mistake has been made! The mol 
probably has been misformulated, either by omitting relevant constraints or by stating them incorrectlv 
Alternatively, a computational mistake may have occurred. 

Multiple Optimal Solutions 
We mentioned in Sec. 3.2 (under the definition of optimal solution) that a problem can have more than one optimal solution. This fact was illustrated in Fig. 3.5 by changing the objective function in the Wyndor Glass Co. problem to Z= 3x1 + 2x2, so that every point on the line segment between (2, 6) and (4, 3) is optimal. Thus, all optimal solutions are a weighted average of these two optimal CPF solutions (x1, x) = w,(2, 6) + w;(4, 3), 

where the weights W, and w are numbers that satisfy the relationships 
WË + W =1 and W; >0, W; >0. 

For example, wË = and w =give 

(s. 9) =2,6) +4.3)=(+ +)=( 4) 
as one optimal solution. 

In general, any weighted average of two or more solutions (vectors) where the weights are non 
negative and sum to 1 is called a convex combination of these solutions. Thus, every optimal solution 

in the example is a convex combination of (2, 6) and (4, 3). This example is typical of problems with multiple optimal solutions. 
As indicated at the end of Sec. 3.2, any linear programming problem with multiple optimal solutions (and 

a bounded feasible region) has at least two CPF solutions that are optimal. Every optimal solution is a 
Convex combination of these optimal CPF solutions. Consequently, in augmented form, every optimal solu-

tion is a convex combination of the optimal BF solutions. 
(Problems 4.5-5 and 4.5-6 guide you through the reasoning behind this conclusion ) The simplex method automatically stops after one optimal BF solution is found. However, for many 
applications of linear programming, there are intangible factors not incorporated into the model that can 
be used to make meaningful choices between alternative optimal solutions. In such cases, these other 
optimal solutions should be identified as well. As indicated above, this requires finding all the other opti-
mal BF solutions, and then every optimal solution is a convex combination of the optimalB BF solutions. 

After the simplex method finds one optimal BF solution, you can detect if there are any others and. 
if so, find them as follows: 
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