Lecture Notes: Review of Matrices and Their Operations

1. MATRIX DEFINITON

1.1. Definition (Matrix). A matrix is an ordered rectangular array of numbers( or functions). The numbers
(or functions) are called the elements or the entries of the matrix.
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1.2. Order/Size of a matrix. A matrix having m rows and n columns is called a matrix of order m x n.
9 13 5
Example [ 3 7 2 ] is a matrix of order 1 x 3and | 1 11 7 | is a matrix of order 3 x 3.
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1.3. Notation of a matrix. A general m x n matrix has the following rectangular array

ail a2 ais e alj N AT
al ago a3 e azj ... Q9n
A=
a;1 a;2 a;3 NN Qg PN (0772
L Gml Am2 am3 ... Gmj ... Qmp ]
OR
A=layl,., 1<i<m,1<j<n, i,j€N

2. TYPES OF MATRICES

2.1. Row Matrix. A matrix with only one row. Example:

A=[1 2 3]
2.2. Column Matrix. A matrix with only one column. Example:
4
B=15
6
2.3. Square Matrix. A matrix with the same number of rows and columns. Example:
2 3
o=[i ]
2.4. Diagonal Matrix. A square matrix where non-diagonal elements are zero. Example:
3 00
D=0 7 0
0 0 5

2.5. Identity Matrix. A square matrix where diagonal elements are 1, and non-diagonal elements are 0.

Example:
10
=1

2.6. Zero Matrix. A matrix where all elements are zero. Example:

-1

1



3. ADDITION OF MATRICES

For two matrices A and B of the same order m x n, their sum C is given by:
C=A+B,

where each element is computed as ¢;; = a;; + b;;.

Example:
1 2 5 6
i R
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A+B:[3+7 4+38] 710 12

3.1. Addition of matrices. Two matrices A and B can be added if they are of the same order. The matrices
A and B are denoted as,

A= [aij]mxn B = [bij]mxn 1<i<m,1<j<n, i,j€EN
then 3 C=A+ Bofordermxn>C = [aij—i-bij]mxn = [Cij]mxn
1 2 1 1 0
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Here, A 4+ B doesn’t exists since A and B are of different orders.
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4. PRODUCT OF TWO MATRICES
The product AB of matrices A and B is defined if and only if the number of columns of A is equal to the

number of rows of B ;

Consider, A = [a;]
then,

and B = [blj]

mxn nxp?

AB = C = [Cij]

mxp
where, C is of order m x p and

n
cij = ) aibjn
j=1

4.1. Mathematical Representation of Matrix Multiplication:
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where, (say) the element coo (of AB) = ag1b12 + agebaa + aasbsz + ... + agnbpa
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Here, AB does not exists.

1 2
whereas when, A= | 3 0 B = [ (1) (1) 1 ]
4 5 2x3



then,

AB =

I
Ot O N
iU

3x3
4.2. Vector Multiplication. For a row vector
v=la b (

and a column vector

their dot product is given by:
v-w = axr + by + cz.

Example Given the vectors:

v=[1 2 3], w=

S U

their dot product is computed as:

veow=(1x4)4(2x5)+ (3x6)=4+10+ 18 = 32.

5. TRANSPOSE OF A MATRIX

Consider A = [ay],,..,, then the transpose of an m x n matrix is defined to be a matrix of order n x m

denoted by AT such that

AV =Tlayl, ., YV ij
1 4
Example A = { le g 2 ] then, AT=1|2 5
2x3 3 6

ie. The rows of matrix A becomes the columns of new matrix AT or vice - versa.

5.1. Properties of Transpose. The following are some important properties of the transpose of a matrix:
(1) Transpose of a Transpose:
(AN =4
(2) Transpose of a Sum:
(A+B)T = AT + BT
(3) Transpose of a Product:
(AB)T = BT AT

6. SYMMETRIC AND SKEW-SYMMETRIC MATRICES

6.1. Symmetric Matrices. A square matrix A is said to be symmetric if it is equal to its transpose, i.e.,

AT = A
This means that the entries of A satisfy a;; = a;; for all 4, j.
Example:
2 31
A=13 4 5
1 5 6

Since AT = A, this matrix is symmetric.



6.2. Skew-Symmetric Matrices. A square matrix A is said to be skew-symmetric if its transpose is equal
to its negative, i.e.,

AT = —A.
This means that the entries satisfy a;; = —a;; for all 4, j, and all diagonal elements must be zero (a;; = 0).
Example:
0o -2 3
B=]12 0 -4
-3 4 0
Since BT = —B, this matrix is skew-symmetric.

7. DETERMINANTS

Determinants are defined as a scalar quantity associated with a square matrix denoted by det A or |A.
Determinant of a 2 X 2 matrix is defined as

a b
=ad — bc
d’
Similarly, Determinant of a 3 x 3 matrix is defined as
air a2 Q13 air a2 Q13
d _ _ az2 G23 a21 Q23 az1  a22
et | a1 aze a3 | = |a21 a2 a3| =an — a2 + a3
azz2 ass3 azy a aszy as2
agr a3z a33 agr a3z as3

=ai1 (a22a33 - a23a32) — @12 (a21a33 - a23031) + a3 (a21a32 - a22031) .

FEach determinant of a 2 x 2 matrix in this equation is called a minor of the matrix A.

Example (i)A = [ g (2) } = det(A) = —10
123 3 1 2 1 2 3
({i)A=| 2 3 1 | then det(A) =1 —2 +3 —1(6-2)—24—-1)+34-3)=4—6+3=1
2 2 1 2 1 2
1 2 2
7.1. Geometrical Interpretation of Determinants.
e For a 2 x 2 matrix A = CCL Z : The determinant det(A) = ad — bc represents the signed area of the

parallelogram formed by the column vectors of A in 2D space.
e For a 3 x 3 matrix A: The determinant represents the signed volume of the parallelepiped formed by
the three column vectors in 3D space.

Meaning of Determinant Zero

e For a 2 x 2 matrix, det(A) = 0 means that the two column vectors are linearly dependent, meaning
they lie on the same line, so the parallelogram collapses to a line (zero area).

e For a 3 x 3 matrix, det(A) = 0 means the three column vectors are coplanar, meaning they lie in the
same plane, so the parallelepiped collapses to a flat shape (zero volume).

In both cases, the matrix is singular, meaning it does not have an inverse and does not define a full-rank
transformation.

7.2. Properties of Determinants.

7.2.1. Determinant of Identity Matriz.
det(l,) =1
The determinant of the identity matrix is always 1.

7.2.2. Determinant of a Triangular Matriz. If A is a triangular (upper or lower) or diagonal matrix, then its
determinant is the product of its diagonal elements:

det(A) = a11a22 " Ann
4



7.2.3. Swapping Rows or Columns Changes Sign. If two rows (or columns) of a matrix are interchanged, the
determinant changes sign:

det(B) = —det(A)

where B is obtained by swapping two rows or columns of A.

7.2.4. Multiplying a Row or Column by a Scalar. If a row (or column) of A is multiplied by a scalar ¢, then:
det(B) = cdet(A)
where B is the new matrix.

7.2.5. Determinant of a Product. The determinant of the product of two matrices equals the product of their
determinants:

det(AB) = det(A) - det(B)

7.2.6. Determinant of a Transpose. The determinant of a matrix is equal to the determinant of its transpose:

det(AT) = det(A)

7.2.7. Determinant of an Invertible Matrix. If A is invertible, then its determinant is nonzero, and:

1

det(A™) = 35

7.2.8. Determinant of a Singular Matriz. If det(A) = 0, then A is singular (non-invertible).

7.2.9. Addition of Rows or Columns Does Not Change Determinant. Adding a multiple of one row (or column)
to another does not change the determinant.

7.2.10. Determinant of Block Matrices. If A and B are square matrices and the block matrix is of the form:

A 0
0 B
then:

det Q‘g g]) — det(A) - det(B)

8. MINOR & COFACTORS

8.1. Minor. Let A be a matrix of order n x n then the minor of element a;; is equal to det of a submatrix of
order (n — 1) x (n — 1) which is obtained by leaving i*" row and j* column of A. It is denoted by M;;.

ail aiz ais
Example For A= | a1 a2 ao3 |, minor of a1 =

az1 asz2 ass

a2 Q23

a (leaving 1% row and 15! column of A)
32

8.2. Co-factor matrix. Let A = (a;j)nxn be a matrix then the co-factor of element a;; = A;; = (—1)i+j M;;.
5



8.3. Adjoint of a matrix. Let A = [a;j], ., and its Co-factor matrix is C' = [A],,.,, = [(—l)iﬂMij}

The transpose of the Co-factor matrix of A is known as the adjoint of A, denoted by adj (A) = [Aij]T =C7T

i.e if
[ a11 a2 a1z ... aiy; ... Qip |
az1 @2 a3 ... Q2j ... Q2
A= ‘
ail a2 453 Qi Ain
L Onl A4p2 ap3 ... Qapj ... Gpp | nxmn
then
i All A21 A31 ce A]l A Anl T
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dj (A) = :
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L Aln A2n ASn A]n Ann 4 nxn
where A;; is the Co-factor element of a;;
(1 4 5
Example Find the adj(A) for A= 0 2 6
| 0 0 3
Solution:- First we find the co-factor matrix.
2 6 0 6 0 2
All _ (71)1+1 0 3 _ 6, A12 _ (71)1+2 0 3' _ O, A13 _ (71)1+3 0 0 _ O7
4 5 1 5 1 4
A21 - (_1)2+1 0 3’ = _127 A22 = (_1)2+2 0 3‘ = 37 A23 = (_1)2+3 0 0 = 07
T RS N _(_3r2|l D _ 33|l 4]
An = ()", l=24-10=14, As = ()" ¢ 6, A= (1)) H[=2.
hence the Co-factor matrix of A,
6 0 0
C=1|-12 3 0
14 -6 2
then
6 —12 14
adj(A)=ct =10 3 -6
0 0 2

9. INVERSE OF A SQUARE MATRIX

Apxn is said to be invertible if 4 By, «, such that AB = BA = I,, where I, is the identity matrix of order
n x n. If B exists, it is denoted by A~! and given by

Al = detl( g(did) (A7 exist = det(4) 0).

a

2 such that ad — bc # 0.
Solution:-Since given that det(A) = ad — bc # 0 so A is a invertible matrix.
An=(-D)"d=d,  Ap=-¢  Anu=-b  Ap=a.

6

Example. Find the inverse of A =



so the Co- factor matrix is

and

Hence,
—1_ 1
ad — be

SH
|
S
[E—

—C a

Example If exist, find the inverse of the matrix A =

oN Ot —
= O
o w

Solution:- det (A) = 5(6 —12) + 7(8) = —=30+ 56 =26 # 0
Hence A is invertible.

-6 —-12 8
Co-factor matrix ([4;;]) = | 28 30 —20
-7 -1 5
-6 28 -7
adj(A) = Transpose of the Co-factor matrix = | —12 30 -1
8 20 5
Hence,
-6 28 -7
-1 ! (adj(A)) = L1212 30 4
det (A) 26 8 90 5

Example If exist, Find the inverse of [ ;1 i ]

det(A) =16 — 16 = 0 . Hence A is not invertible.
9.1. Properties of Inverse of Matrix.
9.1.1. Euxistence of Inverse. A square matrix A has an inverse if and only if det(A) # 0.
9.1.2. Uniqueness of Inverse. If a matrix A is invertible, then its inverse A~! is unique.
9.1.3. Inverse of a Product of Matrices. If A and B are both invertible matrices, then:
(AB) ' =pB7'A!
9.1.4. Inverse of a Transpose. The inverse of the transpose of a matrix is the transpose of the inverse:
(AT)"1 = (A~HT
9.1.5. Inverse of a Scalar Multiple. If A is an invertible matrix and c is a scalar, then:
(cA)yt = L4
c
9.1.6. Inverse of the Inverse. The inverse of the inverse of a matrix is the matrix itself:
A t=4

9.1.7. Inverse of a Diagonal Matriz. If D is a diagonal matrix with non-zero diagonal elements, then its inverse
is also a diagonal matrix with the reciprocal of each diagonal element:

1 1 1
D! =di — e, —
1ag <d17d2a 7dn>

where d; are the diagonal elements of D.
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