
Lecture Notes: Review of Matrices and Their Operations
1. Matrix Definiton

1.1. Definition (Matrix). A matrix is an ordered rectangular array of numbers( or functions). The numbers
(or functions) are called the elements or the entries of the matrix.

Example A =

 −2 5

0
√
5

3
√
6

 , B =

 2 + i 3 −1
2

3.5 −1 2√
3 5 5

4

 , C =

[
1 + x x3 3ex

cos(x) sin(x) + 2 tan(x)

]
1.2. Order/Size of a matrix. A matrix having m rows and n columns is called a matrix of order m× n.

Example
[
3 7 2

]
is a matrix of order 1× 3 and

 9 13 5
1 11 7
2 6 3

 is a matrix of order 3× 3.

1.3. Notation of a matrix. A general m× n matrix has the following rectangular array

A =



a11 a12 a13 . . . a1j . . . a1n
a21 a22 a23 . . . a2j . . . a2n
...

...
...

...
...

ai1 ai2 ai3 . . . aij . . . ain
...

...
...

...
...

am1 am2 am3 . . . amj . . . amn


OR

A = [aij ]m×n 1 ≤ i ≤ m, 1 ≤ j ≤ n, i, j ∈ N

2. Types of Matrices

2.1. Row Matrix. A matrix with only one row. Example:

A =
[
1 2 3

]
2.2. Column Matrix. A matrix with only one column. Example:

B =

45
6


2.3. Square Matrix. A matrix with the same number of rows and columns. Example:

C =

[
2 3
4 5

]
2.4. Diagonal Matrix. A square matrix where non-diagonal elements are zero. Example:

D =

3 0 0
0 7 0
0 0 5


2.5. Identity Matrix. A square matrix where diagonal elements are 1, and non-diagonal elements are 0.
Example:

I =

[
1 0
0 1

]
2.6. Zero Matrix. A matrix where all elements are zero. Example:

O =

[
0 0
0 0

]
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3. Addition of Matrices

For two matrices A and B of the same order m× n, their sum C is given by:

C = A+B,

where each element is computed as cij = aij + bij .
Example:

A =

[
1 2
3 4

]
, B =

[
5 6
7 8

]
A+B =

[
1 + 5 2 + 6
3 + 7 4 + 8

]
=

[
6 8
10 12

]
3.1. Addition of matrices. Two matrices A and B can be added if they are of the same order. The matrices
A and B are denoted as,

A = [aij ]m×n B = [bij ]m×n 1 ≤ i ≤ m, 1 ≤ j ≤ n, i, j ∈ N

then ∃ C = A+B of order m× n ∋ C = [aij + bij ]m×n = [cij ]m×n

Example A =

[
1 2
3 4

]
B =

[
1
2

]
C =

[
1 0
0 1

]
Here, A+B doesn’t exists since A and B are of different orders.

Although, A+ C =

[
1 + 1 2 + 0
3 + 0 4 + 1

]
=

[
2 2
3 5

]
4. Product of two matrices

The product AB of matrices A and B is defined if and only if the number of columns of A is equal to the
number of rows of B ;

Consider, A = [aij ]m×n and B = [bij ]n×p,

then,

AB = C = [cij ]m×p

where, C is of order m× p and

cij =

n∑
j=1

aijbjk

4.1. Mathematical Representation of Matrix Multiplication:

AB =



a11 a12 a13 . . . a1j . . . a1n
a21 a22 a23 . . . a2j . . . a2n
...

...
...

...
...

ai1 ai2 ai3 . . . aij . . . ain
...

...
...

...
...

am1 am2 am3 . . . amj . . . amn


m×n



b11 b12 b13 . . . b1j . . . b1p
b21 b22 b23 . . . b2j . . . b2p
...

...
...

...
...

bi1 bi2 bi3 . . . bij . . . bip
...

...
...

...
...

bn1 bn2 bn3 . . . bnj . . . bnp


n×p

where, (say) the element c22 (of AB) = a21b12 + a22b22 + a23b32 + . . .+ a2nbn2

Example Consider A =

[
1 2
3 4

]
2×2

B =
[
1 2

]
1×2

Here, AB does not exists.

whereas when, A =

 1 2
3 0
4 5


3×2

B =

[
1 0 1
0 1 1

]
2×3
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then,

AB =

 1 2 1
3 0 3
4 5 4


3×3

4.2. Vector Multiplication. For a row vector

v = [a b c]

and a column vector

w =

xy
z

 ,

their dot product is given by:

v · w = ax+ by + cz.

Example Given the vectors:

v = [1 2 3], w =

45
6


their dot product is computed as:

v · w = (1× 4) + (2× 5) + (3× 6) = 4 + 10 + 18 = 32.

5. Transpose of a matrix

Consider A = [aij ]m×n then the transpose of an m × n matrix is defined to be a matrix of order n × m

denoted by AT such that

AT = [aij ]n×m ∀ i, j

Example A =

[
1 2 3
4 5 6

]
2×3

then, AT =

 1 4
2 5
3 6


3×2

ie. The rows of matrix A becomes the columns of new matrix AT or vice - versa.

5.1. Properties of Transpose. The following are some important properties of the transpose of a matrix:

(1) Transpose of a Transpose:

(AT )T = A

(2) Transpose of a Sum:

(A+B)T = AT +BT

(3) Transpose of a Product:

(AB)T = BTAT

6. Symmetric and Skew-Symmetric Matrices

6.1. Symmetric Matrices. A square matrix A is said to be symmetric if it is equal to its transpose, i.e.,

AT = A.

This means that the entries of A satisfy aij = aji for all i, j.
Example:

A =

2 3 1
3 4 5
1 5 6


Since AT = A, this matrix is symmetric.
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6.2. Skew-Symmetric Matrices. A square matrix A is said to be skew-symmetric if its transpose is equal
to its negative, i.e.,

AT = −A.

This means that the entries satisfy aij = −aji for all i, j, and all diagonal elements must be zero (aii = 0).
Example:

B =

 0 −2 3
2 0 −4
−3 4 0


Since BT = −B, this matrix is skew-symmetric.

7. Determinants

Determinants are defined as a scalar quantity associated with a square matrix denoted by detA or |A|.
Determinant of a 2× 2 matrix is defined as ∣∣∣∣a b

c d

∣∣∣∣ = ad− bc

Similarly, Determinant of a 3× 3 matrix is defined as

det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣
=a11 (a22a33 − a23a32)− a12 (a21a33 − a23a31) + a13 (a21a32 − a22a31) .

Each determinant of a 2× 2 matrix in this equation is called a minor of the matrix A.

Example (i)A =

[
0 2
5 0

]
=⇒ det(A) = −10

(ii)A =

 1 2 3
2 3 1
1 2 2

 then det (A) = 1

∣∣∣∣3 1
2 2

∣∣∣∣− 2

∣∣∣∣2 1
1 2

∣∣∣∣+ 3

∣∣∣∣2 3
1 2

∣∣∣∣ = 1(6− 2)− 2(4− 1) + 3(4− 3) = 4− 6 + 3 = 1

7.1. Geometrical Interpretation of Determinants.

• For a 2× 2 matrix A =

[
a b
c d

]
: The determinant det(A) = ad− bc represents the signed area of the

parallelogram formed by the column vectors of A in 2D space.
• For a 3× 3 matrix A: The determinant represents the signed volume of the parallelepiped formed by
the three column vectors in 3D space.

Meaning of Determinant Zero

• For a 2 × 2 matrix, det(A) = 0 means that the two column vectors are linearly dependent, meaning
they lie on the same line, so the parallelogram collapses to a line (zero area).

• For a 3× 3 matrix, det(A) = 0 means the three column vectors are coplanar, meaning they lie in the
same plane, so the parallelepiped collapses to a flat shape (zero volume).

In both cases, the matrix is singular, meaning it does not have an inverse and does not define a full-rank
transformation.

7.2. Properties of Determinants.

7.2.1. Determinant of Identity Matrix.

det(In) = 1

The determinant of the identity matrix is always 1.

7.2.2. Determinant of a Triangular Matrix. If A is a triangular (upper or lower) or diagonal matrix, then its
determinant is the product of its diagonal elements:

det(A) = a11a22 · · · ann
4



7.2.3. Swapping Rows or Columns Changes Sign. If two rows (or columns) of a matrix are interchanged, the
determinant changes sign:

det(B) = −det(A)

where B is obtained by swapping two rows or columns of A.

7.2.4. Multiplying a Row or Column by a Scalar. If a row (or column) of A is multiplied by a scalar c, then:

det(B) = cdet(A)

where B is the new matrix.

7.2.5. Determinant of a Product. The determinant of the product of two matrices equals the product of their
determinants:

det(AB) = det(A) · det(B)

7.2.6. Determinant of a Transpose. The determinant of a matrix is equal to the determinant of its transpose:

det(AT ) = det(A)

7.2.7. Determinant of an Invertible Matrix. If A is invertible, then its determinant is nonzero, and:

det(A−1) =
1

det(A)

7.2.8. Determinant of a Singular Matrix. If det(A) = 0, then A is singular (non-invertible).

7.2.9. Addition of Rows or Columns Does Not Change Determinant. Adding a multiple of one row (or column)
to another does not change the determinant.

7.2.10. Determinant of Block Matrices. If A and B are square matrices and the block matrix is of the form:[
A 0
0 B

]
then:

det

([
A 0
0 B

])
= det(A) · det(B)

8. Minor & Cofactors

8.1. Minor. Let A be a matrix of order n× n then the minor of element aij is equal to det of a submatrix of

order (n− 1)× (n− 1) which is obtained by leaving ith row and jth column of A. It is denoted by Mij .

Example For A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

, minor of a11 =

∣∣∣∣a22 a23
a32 a33

∣∣∣∣(leaving 1st row and 1st column of A)

8.2. Co-factor matrix. Let A = (aij)n×n be a matrix then the co-factor of element aij = Aij = (−1)i+j Mij .
5



8.3. Adjoint of a matrix. Let A = [aij ]n×n and its Co-factor matrix is C = [Aij ]n×n =
[
(−1)i+jMij

]
The transpose of the Co-factor matrix of A is known as the adjoint of A, denoted by adj (A) = [Aij ]

T = CT

i.e if

A =



a11 a12 a13 . . . a1j . . . a1n
a21 a22 a23 . . . a2j . . . a2n
...

...
...

...
...

ai1 ai2 ai3 . . . aij . . . ain
...

...
...

...
...

an1 an2 an3 . . . anj . . . ann


n×n

then

adj (A) =



A11 A21 A31 . . . Aj1 . . . An1

A12 A22 A32 . . . Aj2 . . . An2
...

...
...

...
...

A1i A2i A3i . . . Aji . . . Ani
...

...
...

...
...

A1n A2n A3n . . . Ajn . . . Ann


n×n

where Aij is the Co-factor element of aij

Example Find the adj(A) for A =

 1 4 5
0 2 6
0 0 3


Solution:- First we find the co-factor matrix.

A11 = (−1)1+1

∣∣∣∣2 6
0 3

∣∣∣∣ = 6, A12 = (−1)1+2

∣∣∣∣0 6
0 3

∣∣∣∣ = 0, A13 = (−1)1+3

∣∣∣∣0 2
0 0

∣∣∣∣ = 0,

A21 = (−1)2+1

∣∣∣∣4 5
0 3

∣∣∣∣ = −12, A22 = (−1)2+2

∣∣∣∣1 5
0 3

∣∣∣∣ = 3, A23 = (−1)2+3

∣∣∣∣1 4
0 0

∣∣∣∣ = 0,

A31 = (−1)3+1

∣∣∣∣4 5
2 6

∣∣∣∣ = 24− 10 = 14, A32 = (−1)3+2

∣∣∣∣1 5
0 6

∣∣∣∣ = −6, A33 = (−1)3+3

∣∣∣∣1 4
0 2

∣∣∣∣ = 2.

hence the Co-factor matrix of A,

C =

 6 0 0
−12 3 0
14 −6 2


then

adj(A) = CT =

 6 −12 14
0 3 −6
0 0 2


9. Inverse of a square matrix

An×n is said to be invertible if ∃ Bn×n such that AB = BA = In where In is the identity matrix of order
n× n. If B exists, it is denoted by A−1 and given by

A−1 =
1

det (A)
(adjA) (A−1 exist ⇐⇒ det(A) ̸= 0).

Example. Find the inverse of A =

[
a b
c d

]
such that ad− bc ̸= 0.

Solution:-Since given that det(A) = ad− bc ̸= 0 so A is a invertible matrix.

A11 = (−1)1+1d = d, A12 = −c, A21 = −b, A22 = a.
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so the Co- factor matrix is

[Aij ] =

[
d −c
−b a

]
and

adjA =

[
d −b
−c a

]
Hence,

A−1 =
1

ad− bc

[
d −b
−c a

]

Example If exist, find the inverse of the matrix A =

 5 0 7
2 1 3
0 4 6

.
Solution:- det (A) = 5(6− 12) + 7(8) = −30 + 56 = 26 ̸= 0

Hence A is invertible.

Co-factor matrix ([Aij ]) =

 −6 −12 8
28 30 −20
−7 −1 5


adj(A) = Transpose of the Co-factor matrix =

 −6 28 −7
−12 30 −1
8 −20 5


Hence,

A−1 =
1

det (A)
(adj(A)) =

1

26

 −6 28 −7
−12 30 −1
8 −20 5


Example If exist, Find the inverse of

[
4 8
2 4

]
det(A) = 16− 16 = 0 . Hence A is not invertible.

9.1. Properties of Inverse of Matrix.

9.1.1. Existence of Inverse. A square matrix A has an inverse if and only if det(A) ̸= 0.

9.1.2. Uniqueness of Inverse. If a matrix A is invertible, then its inverse A−1 is unique.

9.1.3. Inverse of a Product of Matrices. If A and B are both invertible matrices, then:

(AB)−1 = B−1A−1

9.1.4. Inverse of a Transpose. The inverse of the transpose of a matrix is the transpose of the inverse:

(AT )−1 = (A−1)T

9.1.5. Inverse of a Scalar Multiple. If A is an invertible matrix and c is a scalar, then:

(cA)−1 =
1

c
A−1

9.1.6. Inverse of the Inverse. The inverse of the inverse of a matrix is the matrix itself:

(A−1)−1 = A

9.1.7. Inverse of a Diagonal Matrix. If D is a diagonal matrix with non-zero diagonal elements, then its inverse
is also a diagonal matrix with the reciprocal of each diagonal element:

D−1 = diag

(
1

d1
,
1

d2
, . . . ,

1

dn

)
where di are the diagonal elements of D.
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