Module 4

Statistical Experiments



Observations of an Early Fan of Statistics

(Mark Twain ..... who blamed this on Benjamin Disraeli):

“There are Three Kinds of Lies — Lies, Lamned Lies and,
Statistics!” © © ©



Probability: Statistics:

0 From population'to 0 From sample to the
sample (deduction) population (induction)

Statistics: Given the
information in your
hand, what is in the
pail?

Probability; Given
the information in
the pail, what is in
your hand?

Taken from - https://www4.stat.ncsu.edu/~reiland/courses/st511/sampling%20distributions%20and%20CLT.pptx
Very interesting set of slides! Please do read when you have time




Inferences

. Deductive _|
Inference

>Inductive
Inference

—

g—

Conclusions based on a set of premises
(propositions) and their synthesis

1. All men are mortal (Proposition 1)
2. Socrates is a man (Proposition 2)

= Socrates is mortal (Deductive Conclusion)

Probabilistic in nature. One conducts an
experiment and collects data. Based on this
data, conclusions of broader applicability can

be inferred.

Heights are measured of a sample set of men and
women to find that in this set men are taller than
women on the average

Main Theme of this Module:

= In the broader population men are taller than women

—

“Draw conclusions based on inductive

reasoning from data obtained from statistical experiments”



Summary of Useful Distributions for Statistics

Normal Distribution X~N (u, 52) Chi-Square Distribution X, ~x%(r) r = 1,2 ...
e r degrees of freedom; sum of the squares of
_ 1 —x_a”z _ independent V' (0,1) random variables
PDF fX(x)—We 2 g o< x < oo (0,1)
MGFE M(t) = E(etX) = eHtt0°t*/2  _o <t < o 1(5)(%)—1 .
Mean E(X) = u PDF fx(x) = > 21" ~—e 2 x>0
Variance Var(X) = o2 )

I'(a) = fooo t*le~tdt

MGF M(t) =E(E™)=(1-2t)"2 —oco<t<m®
Mean E(X) =u=r
Variance Var(X) = 0% = 2r



Definition of Terms used in Statistical Sampling:

Random Sample: Consider a population {8 from which we pick n samples
randomly to get the n random variables X, X5,..... X;,. These constitute a
random sample if they are independent and identically distributed (i.i.d)
random variables.

Note the statistical techniques can be applied to draw proper inferences only
if the samples X3, X5,..... X;, are drawn in a random manner from ‘3



Definition of Terms used in Statistical Sampling:

Statistic: A statistic is a function of the observations made from a random
sample.

A statistic is any quantity computed from values in a sample which is
considered for a statistical purpose. It is a random variable because it
depends on randomly selected samples.

Statistical purposes include things like estimating a population parameter,
describing a sample, or evaluating a hypothesis. The average (or mean) of
sample values is a statistic as well.

See example in next slide




Example: Random Sample and Statistic

Want to find out what proportion p of 10,000 employees will buy
subscription to a Health Facility.

Since surveying all 10,000 may not be feasible, HR picks 100 employees
randomly, irrespective of gender, age, department etc. for the survey and
finds that 71 of those 100 people will buy subscriptions.

Therefore, p = 0.71 is a reasonable estimate of p

Note that if we had chosen a different set of people then the value of p
may have been slightly different.

The statistic p is therefore itself random as it a function of the random
sample



Sample Statistics: Consider the random sample X, X5,..... X,

Some frequently used sample statistics are the following —

1. Sample Mean ¥.=1 nx, _ Xat+ Koot Xy
n n
2. Sample Variance S2 = (nil) n (X, — X)?

This is referred to as an Unbiased Estimator of the Population Variance ¢2.

(See next slide for details)

3. Sample Standard Deviation S = V52 Variance of the sum =
Sum of the variances

¢_I

Bienayme’s Formula: If the random variables X5, X5, ..... X,, are independent, then Var(3L, X;) = Yiv, Var(X;)




X1, X5,.... Xy, are i.i.d random variables, each with mean u and variance ¢

Why call S? (as defined in the last slide) an Unbiased Estimator of the variance?

More specifically, why is (n_il) * (X; — X)% an Unbiased Estimator of 02 whereas % mL(X;—X)%isnot (i.e., it is

a biased estimator of g2)?

Consider S2= (_;Z?ﬂ(xi —X)2  (Uncorrected) Sample Variance
where X = % . X; isthe Sample Mean with X —u = % X —w) =Y X —w =nX—pn
—~ 1 _ 2_ 1< N 2 1< 2 _ n . )
E(SZ)ZE{;Z()Q - X) :E{;Z((Xi ~u)=(X-p)) }:E{;Z(Xi -p)’ —;(X_ﬂ)Z(Xi —p)+(X - ) }
i=1 i i=1 i=1 i=1
1 & | — 2 — 2
ZE{;Z(XZ-—#)Z —E[(X—ﬂ) JZGz_E[(X_/‘) J
i=1 n
no’ 4/: 1_1 o’ <o’ X (sample mean) is still X LX, EX;—w)=0
n n a random variable
Biased Estimator as it :EHX|+..+ X, _ﬂ}z}: E[{(X, = )+t (X, =)} | This is the Variance of the
depend on the n, the n n’ < Sampled Mean

2 .
number of samples _no Will be useful later
n




1

Now consider §2 := Y (X — X)?

(n-1)
1 & _ The Unbiased Estimator does not show any
E(Sz) :E{(n—l)Z(X"_X)} dependence on n, the number of samples
- . being considered. This makes it better to use
=L FZ(X - _)2} than the biased estimator which depends on
(n=1) nl"zl the number of samples and converges to the
n

_ (1__};2:0.2 true value of the variance only when the
number of samples tends to infinity.

From previous slide!

oo {2

n n



Summarizing the important points:

X1, Xo,..... X, are i.i.d random variables, each with mean p and variance o2

Sample Mean X = Z X = . E{X} =

Variance of the Sample Mean Var{X} = E{(X — n)*} = %2
Sample Variance (Unbiased) S2= (nil) X —X)? E{S%} = o*
Sample Variance (Uncorrected)  S$?= % nLX - X)? E{$?} = (1 — %) a?

E{$?} = E{S?} — Var{X}



Sampling Strategies Lot of money may ride on how you sample, e.g. in “Nielsen Ratings

Random Sampling: Every member of the population equally likely to be chosen for sampling

Stratified Sampling: Population classified into subpopulations based on some
characteristic, sampled randomly within the sub-populations in the same
proportions as in the original population.

This is used commonly in pattern classification and machine learning applications

Clustered Sampling: Population classified into subgroups such that each subgroup
encompasses all the features of the entire population. The clusters are then
randomly selected as a group, rather than individually, to form the sample set

Systematic Sampling: A pre-defined strategy is used to pick the members of the
sample set from the whole population, e.g. every 10% (randomly decided)
member of the population is sampled sequentially.




Sampling Distributions:

These are the probability distributions of a statistic and are a
consequence of the real outcomes of a statistical experiment.
The commonly used ones are -

Standard normal distribution  arises naturally for means or as a
consequence of the Central Limit Theorem (CLT) with known mean
u and variance g2

x? distribution arises from the sum of the squares of normally
distributed random variables which have zero mean and unit
variance, i.e. N°(0,1)

2

t distribution used when the population variance o is not known

and only the sample variance S? is known

F distribution used when considering the ratio of two independent
chi-square random variables y2 and y2,

The probability
distributions considered
earlier in Module 2 arose
from theoretical
considerations

Note that the sampling

distribution of a statistic

will depend on —

(a) Distribution of the
Population

(b) Sample Size and

(c) Sampling Strategy




Sampling Distributions of the sample mean X and the sample variance SZ.

If the random sample X3, X5,....., X,, is drawn from the normal distribution (i.e.,

_ 2
X1, X5, Xy~N (1, 0%)) then by the linearity principle, we have X~N (u, %)

It turns out that X and S? are independent random variables where this
independence of X and S? is a unique property of the normal distribution.

However, what is very interesting and useful is that we can state the
asymptomatic distribution of X without assuming the distribution of the
individual samples X3, X5,....., X;;, (Central Limit Theorem)



Sampling Distribution of X: Central Limit Theorem

Central Limit Theorem: Consider a random sample of size n denoted by X3, X5,....., X;; which is
drawn from a population with mean u and variance o where E(X;) = u, Var(X;) = d2. Then

the asymptotic distribution of Z = ;(/;\/‘% as n — oo is the standard normal distribution N(0,1)
The important point here is that the asymptotic distribution of Z = % for a large enough n,

is normally distributed, even though X4, X>,....., X,, may not be normally distributed

How large an n do we need for CLT to hold? How many samples do we need to take?

If the underlying population distribution is like a standard normal distribution, then only a few (3-5)
samples would be enough. If the underlying distribution is very different from a normal one then
we may need more, say ~30
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[ histogram of samples from exponential distribution | |
— pdf of distribution with N samples
—=—standard normal distribution I

Read pages 65-67 of Prof.
Amrik’s notes for details.
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Example 6.4.4 Application of CLT (please read the book for “camera” details)

Distance measured n times a second. After each second, the mean distance measured is reported.

How large should n be to be at least 95% certain that the estimated distance is within +0.5m of the actual

distance?
F 1 second '|
3 1 1
1 2 i i+1 n—1 n
Distance Measurement Camera gives sample values X, X,, X5, ... ... ... ,X, ,i.e., nsamples every second, after

which a decision is to be made.
Each of these X;s are i.i.d. random variables with mean E(X;) = X; = pand Var(X;) = E (Xl2 — )?lz) = g2

Note that we are given the mean u (= d)and the variance o%(= 4) of the random variables X;s.
We do not know their distribution, but we know/assume that they are i.i.d. random variables




X is the mean measurement
made every second by =—[X + X, +..+ X,
averaging X, X,, X3, oo .. ... , Xn

Note that X is a random variable whose distribution we do not actually know
but we claim from CLT that this will be a Normal Random Variable

From the measured values X, X,, X5, ... ... ... , X, we get the
estimated mean E(X) and variance Var(X) as -

E(X ):—[E )+ E(X,)+.tE(X,)]=d |
From CLT,
See Slide 12 X~N (d, %)

2
= (o}
n

With Z as the standard normal r.v. with mean = 0 and variance = 1, we get -

R !

q

e

m

>

Another useful result
for N(0,1) distribution

For g=1-P(Z<m), m>0
P(-m<Z<m)=(1-2q)
=1—2{1—P(Z<m)}

=2P(Z <m)-1

_ -05 X-d ‘/— ‘/_
P(—0.5<X—d<0.5)=P(2/\/— 2/n z/fj ( 4

7 <—
4

4 J > 0.95 for at least 95%
certainity
:ZP{ \/;)—1




Table of the Standard Normal Distribution (taken from your textbook)

0.00 001 002 003 004 005 006 007 008 009
0.0 | 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5230 0.5279 0.5319 0.5359
0.1 | 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 | 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 | 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
1.6 | 0.9452 0.9463 09474 09484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 | 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 | 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 09686 0.9693 0.9699 0.9706
1.9 | 0.9713 09719 09726 0.9732 0.9738 0.9744 0.9756 0.9761 0.9767
2.0 | 09772 09778 09783 0.9788 09793 0.9798 0.9808 0.9812 0.9817
2.1 | 09821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9850 0.9854 0.9857
2.2 | 09861 0.9864 0.9868 0.9871 0.9875 0.987 0.9884 0.9887 0.9890
2P[Z<%}—120.95 N P£Z<%J20.975 ﬁzl,% :>

Figure 6.8: An excerpt
from the standard nor-
mal distribution table
compatible with the
shaded portion of the
probability distribution
shown in Figure 6.7.

In the example dis-
cussed in section 6.4.4,
m = 1.96. P(Z < 1.96)
can be computed from
the table by reading off
the entry corresponding
to (1.9,0.06) = 0.9750.



Study of some Sampling Distributions which either arise from the Standard Normal
Distribution or Converge Asymptotically to the Standard Normal Distribution

(i) The chi-square distribution X~y?2(v)

This is the distribution of the sum of the squares of v independent standard normal random variables
N (0,1) and is said to have v degrees of freedom

X, ~ 7 v): X =Z'+7Z+..... +Z> Z ~N(,1)i=12,.....,v

Number of degrees of freedom, v =5 - Number of degrees of freedom, v = 3

[Emhistogram of samples from X =72 + 22 + . - + 72; where Z, ~ N(0,1), i=1,2,....v

I [mlhistogram of samples from X, =22 + ZZ + - - + Z%; where Z, ~ N(©,1), i=1,2,....

—pdf of X”
= pdfof ()

00

Matlab function
chi2pdf

Matlab function
chi2pdf

th(x)

X
X

Note that )(2(1) is the square of standard normal random variable Z~N(0, 1) ; see next slide!



Number of degrees of freedom, v = 100
—pdfofX
= pdfof _\2(,/)

Properties of the chi-square random variables: i R

*E(X,) =vandVar(X,) =2v......... ([ T H H

For large v(say 100), the y%(v)
*¥2(v) > N(v,2v) asv - o distribution converges to N (v, 2v)

* ¥2 values are always positive (for v > 1) or non-negative (for v = 1)

probability density function

* The shape of the pdf of x? random variables depends on v

This approximation is very good for large values of v, say for v = 30.

This implies that for large values of v, Z = }i}’_ ~N(0,1) where X,, = y2
ny
P 2
2 1\2 5 1 x
* pdfof y*(n) fX(x)zE , x>0 x2(2): fX(x)=§e 2 x>0
r(zj Exponential Distribution

[' Gamma Function



Application of the y?Distribution: Sampling Distribution of

Let X;~N(u,02);i = 1,2, ..., n be the n samples with

Sample Mean X = %Z?ﬂXi and

Unbiased Sample Variance S? = (nil) X —X)?
_ 2
Then, %ﬂ(z(n - 1)
_ 2
The rv. & 012)5 has a y? distribution with (n — 1)

degrees of freedom, i.e., it has the distribution of the sum
of squares of (n—1) normally distributed N(0,1)
random variable each with zero mean and unit variance.

\ )
|

Why is this true even though the
summationis fromi =1 to n?

probability density function

(n—-1)S?

2

o)

Demonstrating L"—ﬂl.]i ~x*(n—1) withn=25

I
(n

|-hist0gmm of ag;sf based on 100000 realizations

—pdf of ("—:s)i
|= pdf of x*(n—1)

|

%
X

Sampling Distribution of the Sample Variance




Example: The Success Rate of a Sniper

The optical scope on the marksman’s rifle has a lack of precision in each of the horizontal and vertical coordinates
that is normally distributed with mean 0 and variance of 4 sq. meters. What is his success rate to hit a target

within a radius of 0.1 m?

Solution: Let R%.. = X? + YZ2denote the square of the error to hit the target X, Y~N(0,4). We scale X, Y to
Zy=X/2and Z, = Y /2 to have Z; and Z, as standard normal random variables with Z;~N(0,1),i = 1, 2.

Therefore,

P(R., <0.01)=P(Z} +Z; <0.01/4=0.0025)

err

X3 becomes an

i _0.02025 <_|7 exponential
=P(7; <0.0025)=1-e¢ distribution

=0.0012

Therefore, the success rate of the sniper in the given situation is only 0.12%



Example: Locating a target in three-dimensional space, and the three coordinate
errors (in meters) of the point chosen are independent r.v.s with mean 0 and
std. dev. 2. Find the probability that the distance between the point chosen and
the target exceeds 3 meters.

If D is the distance, then D? = XZ? + X2 + X2 where X; is the error in the it
coordinate.

: X; . .
Since Z; = ?l,l = 1, 2, 3 are all standard normal rvs, it follows that

P[D? > 9] = P[X? + X2 + X2 > 9] =P[212+Z§+Z§ >§]

9
=Pl >
= (0.522 from tables or MATLAB



(ii) The t-Distribution (also known as the Student’s t-Distribution) T~t(n — 1)

Consider when we take n random samples Y; from any population distribution which has
the mean u and variance o2, where both are known.

_ 2
Then, using CLT, as n — oo, we can approximate the sample mean Y~N (,u, %)

= 7= — a ~N(0,1) Shifting the rv. Y and then
(0_2) scaling it to get the rv. Z
n

However, in many practical scenarios, Z may not be a suitable statistic to use as the variance
a2 may not be known or known only very approximately (e.g., when the sample size is small.)

In that case, we can modify this to an alternative test statistic where the Sample Variance S?
is used instead of ¢2. This is also convenient to do, as S? is knowable/computable.

Note that when there are only a few sample points, the CLT approximation may not be very
good anyway, and it may be better to use the t — Distribution instead.




_ 2
We know that for the y? distribution, we have % ~)((2n_1)

7 Note that here,
This motivates a new test statisticT as T =T, = —— both Z and x{,—1y
2
X(n-1) are independent
(n=1) random variables
The test statistic T is formally given as —
¥ —u T : _
T — ~t(n —1) t distribution with (n — 1)
S degrees of freedom
Jn

Easy to see that as n —«, this tends towards a standard normal distribution N(0,1) = When the number
of samples is large, it may just be easier to use a normal distribution and still be accurate enough




Probability Density

Probability Dens Ity
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Properties of the t Distribution
1. t(n) » N(0,1) forn —» o
2. E(T) = 0forn > 1 (otherwise, undefined) and Var(T) = %for n>2

3. For a, 0< a<1, for the t-distribution with n degrees of freedom, let ¢ ,, be such
that P21, =0 ()
Then, it follows from the symmetry of the t-distribution about zero, that —T, has
the same distribution as T, .
Therefore -

a:P{—Tn Zta’n}:P{T S—ta’n}zl_P{TnZ_ta,n}

n

__________________

= P{T,2-1,,}=1-a “a

comparing “la,nT M-, a,
with (A) —t =1 Typical values of @=0.05, or 0.01
a.n l-a,n




Applications of the t Distribution

Consider two different samples of sizes n{and n,with respective means
X1 and X, and sample variances $;and S,

Question: Are the two means sufficiently alike to infer that both samples
were drawn from the same population?

To answer this, suggest the test statistic

T := (951—9?2)\/\/(:%—;)"'(”2—1) \/nni: with the t-Distribution
1 2 1 2

For a more detailed description of this, read Sheldon Ross (2021) (reference text) pp
326-338 or the book by R.A. Fisher (1925) pp 90-104 referenced in your textbook.




Example: Estimating the Spread of Viral Infection

1. The daily number X of reported flu cases is X~N(70,9).

What is the probability that on a given day, the total number of reported cases exceeds 757?

X~N(709) > Zz="F="""x~167,

N
Z is a standard N(0,1) normal random variable

Note n=1 in this case as there is
only one report to be considered.

In terms of the original random variable X, we want to find P(X > 75)

Equivalently, in terms of the random variable Z, we want to find P(Z > 1.67)

Weget P(Z>1.67)=1—-P(Z<1.67)=0.0475 (from MATLAB, or probability tables)

P(total number of reported cases in a day >75) = 0.0475



Example: Estimating the Spread of Viral Infection

2. The actual daily mean number of flu cases is 70 (i.e., uy = 70) but it is not known if Y follows
a normal distribution. Over 15 days, the sample mean Y of the number of infections is
computed. It is also observed that the Sample Standard Deviationis § = 4.

Question: What is the probability P(Y>74) ?

7—
Since the population variance is unknown, the test statistic usedis T = SHY ~t(n—1)

Vn

as it depends on the sample standard deviation S = 4. Therefore,

)7—,u>74—70
S 4

P(Y>74)=P = P(T >3.8730)=0.00084461

ﬁ \/E T~t(n —1) used withn = 15




The F Distribution ~F(n,m) with n and m degrees of freedom

If X, = x2 and X,,, = x2, are two independent chi-square random variables with . and m
degrees of freedom, respectively, then the ratio

Xn/n
Eym = n/
’ Xm/m

is a random variable with the F distribution with n and m degrees of freedom.

The corresponding pdfis -




The F Distribution

Further, if we have two independent samples of size n; and n, from two
independent normal populations with respective variances 012 and 022, then
the statistic

St /a] S; = Sample Variance of the n; samples
92/ o2 S, = Sample Variance of the n, samples
2 2

follows the F(n; — 1,n, — 1) distribution



.55. -pdf of F1;
. . . . Byl ~pdf of F52
Properties of the F Distribution 2| pdf of Figo.100
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Properties of the F Distribution ........continued........

Xn/n
Xm/m

5. The Mean and Variance of the ~F(n, m) distribution, i.e., F :=

2 f—
Mean E(F) = — Variance Var(F) = - (ntm=2)

m
m—2 n(m-2)2(m-4)

6. Consider P(F> fynm) = ffjnmf,:(x)dx =« —L

a corresponds to the rejection

P(F = foc,n,m) = fga’n’mfp(x)dx =1—« region.
fi—anm The area under the pdf fz(x) to
P(F = fl—a,n,m) - fo T fr(odx = a the right of f, , m is equal to a.
e

Here  fuonm isthe upper-tailed a-percentage point
and fi—anm is the lower-tailed (1 — a)-percentage point

(1- ) corresponds to the
acceptance region, the area under
the pdf fr(x) to the left of f; ;, 1

The lower and the upper points are related as

. -1 See next slide
f l-anm — (f a,m,n)

Here  ais known as the level of significance
and fanm as the critical value

UM
—w

fl—a,n,m fa,n,m




If fonm is the upper-tailed a-percentage point for this distribution W~F, ,, then

p(w> fa,n,m)= a .

1 1
Choose fi_qnm such that o= P[W < i m] _ P{W > - } f | f
l—a,n,m 1-anm anm

For a lower-tailed probability of a, where « is generally small, we note that if the distribution of W is
W ~F, m, then the distribution of 1/W is Fy, ,,.

P[L > } =a
Therefore, = e

It then follows that !

= fa,m,n A 4

l—a,n,m



Applications of the F Distribution

1. The test statistic used for performing an analysis of variance (ANOVA)
experiment to test the difference between means of different populations
is an F random variable that follows the F distribution.

2. The F distribution is also used to test the existence of any significant
difference between the variances of two different groups of population.

For example, a university academic policy may prefer that two
instructors, co-teaching a course, should grade exams in such a way so
as to have the same variation in their grading



Hypothesis Testing & Statistical Inference

Hypothesis testing is a form of statistical inference that uses data from a sample
to draw conclusions about a population parameter or a population probability
distribution.

First, a tentative assumption is made about the parameter or distribution. This
assumption is called the null hypothesis and is denoted by H,.

An alternative hypothesis (denoted H, or H_), which is the opposite of what is
stated in the null hypothesis, is then defined.

The hypothesis-testing procedure involves using sample data to determine
whether or not H, can be rejected. If H is rejected, the statistical conclusion is
that the alternative hypothesis H, is true.



Components of an experiment to test hypothesis:

The key components are —

1. Construct the statement to be tested: null (Hy)vs. alternate (H; or H;) hypothesis

2. Identify the rejection (or critical) region to enable a decision about the hypothesis.
For example, the evidence based on the test statistic may suggest that we either reject
or fail to reject the null hypothesis.

3. Quantify the likely error in the decision arrived at in (2) in terms of a probability measure.
This could be either a —

type — 1 error mistaken rejection of an actually true null hypothesis

with a probability of occurrence a
or type — 2 error mistaken acceptance of an actually false null hypothesis

with a probability of occurrence

Our objective will generally be to reduce these errors while deciding, but in many
scenarios, reducing one type of error can increase the other type of error




Example: Detecting a Reflected Radar Signal from an Aircraft in a Noisy Environment

Return Signal
(from an aircraft)

-+

Ambient Noise

Hy: Enemy Aircraft Present
H;: No Enemy Aircraft Present

0.4 Histogram .
Noise only Signal + Noise
. Detection ]
s | threshold
Type-| Errar
Frtes? Type-Il Error
0.2+ (Pra)
0.1 1
0
" vm"

Type - | Error: Missed Detection

Type -l Error: False Alarm

Signal present but (Signal + Noise) < Detector Threshold
No Signal but Noise > Detector Threshold

/B40:I0[OYISINUDWIAS MMM//:SA11Y :W OIS



pP(X=x|Y=0)

p(X=x]Y=1)

Y is the estimate of Y

Moving the threshold
left or right forces a
tradeoff between the
two types of error!

TRUE POSITIVE (TP: 1, 1) Correct Decision
TRUE NEGATIVE (TN: 0:0) Correct Decision

Type 2 Error Probability 5
FALSE POSITIVE (FP: 1, 0) Wrong Decision
{0 interpreted as 1}

Type 1 Error Probability a
FALSE NEGATIVE (FN: 0, 1) Wrong Decision
{1 interpreted as 0}

Decision \Truth condition

Hpy is true

Hpy is not true

Hj is not rejected

Decision is correct
(with probability 1 — a)

type-2 error
(with probability p)

Hy is rejected

Decision is correct
(with probability 1 — B)

type-1 error
(with probability «)




Steps for Performing a Hypothesis Test

1. Specify Hyand H; and an acceptable level of significance a

2. Define a sample-based test statistic (e.g., X, S? etc.) and a rejection (or critical)
region for H, that is most suitable for the experiment.

3. Collect the sample data and calculate the test statistic
4. Make a decision to either reject or fail to reject H,

5. Interpret the results in the language of the of the problem at hand (e.g., provide
confidence intervals, etc.) and provide an estimate of the error in the decision.



What might determine our choice of a?

Example (from the textbook, page 82)

A company that packages salted peanuts in 8 kg jars is interested in maintaining control
on the number of peanuts put in the jars by one of the machines in its packaging units.

Control is defined as averaging 8 kg per jar and not consistently over or under filling the
jars. To monitor this control, a sample of 16 jars is taken from the packaging line at
random time intervals and their contents weighed. The mean weight of peanuts in these
16 jars will be used to test the null hypothesis that the machine is indeed working

properly.
What may be a suitable level of significance a for this test?

For convenience, we assume that the population standard deviation o = 0.2 kg of the
weight of the jars is known to us.




In this case, we are only
Choosing «a for the previous example— (u=8,0 =0.2,N = 16) interested in Hy and the
corresponding level of
significance a

1. (Step 1) Choose the hypothesisas- Hy: u=8 H,: u#8 —
2. (Steps 2 & 3) Choose the test statistic for this case as the Sample Mean X = i2%6Xi
16 H, could have
3. (Step 4) Suitable rejection criteria is then selected, suchas X < 7.9 or X > 8.1 been —
u > 8 overfilling
4. (Step 5) This helps in deciding the level of significance a of the test estimated as follows - 1 < 8 underfilling

(This may also be interpreted as the maximum Type-1 error.)

a=PX<790rX >81 whenu=8)
= _ _ X-u 7.9-8 _
P(X <7.9) = P(z = <R = —2.0) = P(Z < =2.0)
= 0.0228 (e.g., from tables such as the one in the next slide)

Similarly (from symmetry about the mean) P(X > 8.1) = P(Z > 2.0) = 0.0228

Therefore, a = P(Type-1 Error)= P(X < 7.9)+ P(X > 8.1) =0.0456  Note that X < 7.9, X > 8.1 are disjoint

Type 1 error: The null hypothesis is true (i.e., item is within the “acceptance range”) but we make the error of rejecting it.
The Level of Significance a is then the probability of that happening (i.e., the probability of a type-1 error)




Table 1: Table of the Standard Normal Cumulative Distribution Function ®(z)

P(z < -2) =.0228
[ = [ 0.0 0.01 0.02 [ 0.3 0.04 | 0.05 0.06 | 0.07 0.08 0.00 |

-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.00326
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110

e REIEE vl 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

% il (), 0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.4 0.0308 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.3 0.0963 0.0951 0.0934 0.0018 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
-0.9 0.1541 0.1814 0.1783 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
-0.8 0.2119 0.2000 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1394 0.1867
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.5 0.3085 0.3050 0.32015 0.2081 0.2946 0.2912 0.2877 0.2843 0.25810 0.2776




Comments on the Level of Significance «

1.

There is no general rule of thumb to choose a as we may not have a clear
idea of what an appropriate maximum allowable type-1 error should be for
a typical statistical experiment.

The level of significance @ may also be sensitive to minor changes in the
sample statistic which will affect testing the veracity of the hypothesis
appropriately

There is always a trade-off between a (probability of type 1 error ) and 8
(probability of type-2 error) as any effort to reduce one may be likely to
increase the other. Jars are being filled all right, but we say they are not vs
Jars are not being filled all right, but we say they are.

(See also the earlier slide on missed detection and false alarm.)
Changing the detection threshold to reduce probability of false alarm will
increase the probability of missed detection




Two Sample Test for Means: Another test of hypothesis using the t distribution

Consider a case where we have two different populations that are normally distributed with
the same variance. A random variable, sampled from each population, is denoted by
X;1~N(uy,0%) and X,~N (i, 5°)

Let there be n; samples taken from the first population, i.e., X;;~N(uy,02); i=1,2,.....,n4

and n, samples taken from the second population, i.e., X2j~N(,u2, a?); j=1,2,....,n,
1. Step1l: Construct the hypothesis Hy: w1 =,
and Hy:  pq # Uy double sided test
(alternatively, py> u, or py < uy) single sided test

Further, choose and set

Y — 1) — (T — _\e2 _\e2
2. Steps 2 &3: The test statisticis t := (¥ ~2) = Kat2) |\ here §2 = (o= DS+ 1)S;
11 (n1-1)+(n,-1)

ni nz

and szis the sample variance corresponding to the samples taken from the j* population set j = 1,2



3. Step 4: Identify the rejection criteria. There may be three distinct cases depending on the type of test
(double or single-sided alternate hypothesis)
* Reject Hy in favour of Hy (g # Wy) if

62 ¢ (2, = D+ (- D)

* Reject Hy in favour of Hy (g > wy) if
t > t(a:, ny—1+ (n, — 1))

* Reject Hy in favour of Hy (g < wy) if
t > —t(a, n -1+, — 1))

Note that in the above, the RHS term refers to the t observable value from the t distribution with a
given significance level (g or a, as stated above) and ((n1 -1+ (n, — 1)) degrees of freedom.



Example (6.6.8): Choosing between two gasoline brands for optimal
mileage and performance

While comparing two different gasoline brands, a consumer survey reveals the
following:

e A full tank of brand Gusto requires 4 cans and covers 546 km with a standard
deviation of 31 km

e A full tank of brand Jiva requires 4 cans and covers 492 km with a standard
deviation of 26 km

Assume that the performance parameters (mentioned above) of both brands are
sampled from Normal distributions with equal variances.

Test if there is a significantly better value in terms of mileage offered by Gusto over
Jiva or if the mileage of both brands are statistically similar. Choose a = 0.05.



Solution: In the following, we use the subscript G for brand Gusto and subscript J for brand Jiva and define
the hypothesis as follows.

(ng — 1SZ + (n; — 1)S?

H,: = H;: > g2 —
0- Mg = Hy 1+ He - 1y oD —(n-1)

From samples of Gusto, we have X; = 546,S. = 31,n; = 4

From samples of Jiva, we have X, = 492, §;= 26, n;=4 pom Ko ~Ha) = D)
, 1,1
- 2 _ 2 S |—+ =
The sample variance ~ S? = (2 1)3;:(_42 D26, ¢ = 28.609 ey
Therefore, t (under Hy) = 2 =267

28.609 |+3
The observable value t(0.05,6) = 1.9432 (either from the t distribution look-up table or using Matlab)
where (ng —1+n, —1)=4+4—-2=6.

Since this is a single-tailed test H;: g > u; and because tegicyiatea = 2.67 > t(0.05,6) = 1.9432
we reject Hy in favour of H;.

Reject Hy in favour of Hy (ug > uj) ift >t (a, (ng—1) + (n] = 1))

In other words, brand Gusto will likely give us better mileage than brand Jiva at the level of significance a =
0.05 (i.e., with 95% confidence level)



The Two Sample Test for Means cannot be generalized
for more than two different population sets.

For multi-population tests, we may have to resort to

Analysis of Variance (ANOVA) test which are described
next



One-way ANOVA 2

Data collated from survey samples is denoted by yi;where the,

- first subscript represents the it population group (i = 1,2, ..., t)
,n) —I

and - second subscript represents the ji* observation (data point; j = 1,2, ...
in the group

We will consider n, n,, ..., n, observations for each of the ¢ population groups.
For the special case wheren, = n, = ... = n, = n, we have a balanced data set

The total number of observations is Y.5_, n; (= nt in the case of balanced data)



Observation (Data) Point

Null Hypothesis (One Way ANOVA) ——

t

Ho: py = pp....= pg

H;: the above equalities are not satisfied

Population Group

(Factor) 1,.......,

< |

Assumption:

nt total observation points
with n observation points in
each of the t groups

Data in each of the t population groups is normally distributed
as N(u,,0%) i = 1,....,t where the variance o is the same
across all the population groups

Approximation appealing to the CLT is possible

One-Way ANOVA can also be formulated for scenarios where the number of observation points in the t groups are not same.
(See Ross for other basic variations)



What is the approach of (One-Way) ANOVA?

Let ¥; and S? be the sample mean and sample variance of the data of the i‘"
population groupi =1, ...,t.

We test Hy, by comparing the values of two estimators of the common
variance g2

First Estimator: Estimates o2 only when H, is true; tends to exceed a2 when
H is not true

Second Estimator: Estimates o directly and is always valid, whether or not
Hy is true

First Estimator

Define a suitable F statistic as the ratio of the above two

Second Estimator
(independent) estimates of the common variance 2.

Ratios of two chi-sq r.v. will have the F-distribution

Calculate the probability of this statistic ratio exceeding some acceptable
threshold to reject H,

F density function
/ Shaded area=a

,{ X

F’.S.u

,,,,,

Values of F,0.05
r = Degrees of freedom
for numerator

s = Degrees of freedom
for denominator 1 2 3 4

4 771 694 659 6.39
5 6.61 579 541 519

10 496 410 3.71 3.48



Estimator of Variance not dependent on H,

I 2. 2
There are tn independent observations (i.i.d. normal r.v.s) yij~N(ui,02) i=1,..,t 1
j=1,....,n where both the mean y; and the variance o2 are unknown. 2
It follows that ZZM zz(y'f A e Al <R

i=l j=1 i=l j=1

Has a chi-square distribution with tn degrees of freedom t
;s the true mean of the i*" population, not known

To obtain estimators for the t unknown parameters y; ..... Us, we use y; to denote the
- Vi
row average y; = 7=1f

This y; is then the sample mean of the i*" population and is an estimator of the mean y; i = 1,..,¢

{ n yl] Vv ?
Using this for u; in [A], we can see that Z ( ) ~x2Z _. (chi-sq with tn — t degrees of freedom since one

i Jj=1

degree of freedom is lost for each of the estimated parameters)

Note also that the mean of this chi-squared random variable will be (tn — t)



Let SS, =ZZ(,V,-,»—)7,-,)2 and E[SSp] = (tn — t)o?

i=1 j=1

Estimator of Variance not dependent on H Si =—2F —

Note once again that this estimator was obtained without assuming anything about the truth

of the null hypothesis H,

Ss
n—p for the balanced case



Observation (Data) Point

Estimator of Variance when H, is TRUE = B
I 2. A T n
* Allthe population meansareequaly; =u i=1,...,t g 1
2 o
* Themsample meansy; ... , V¢ are ~N (,u, %) and are independent © 4 2
random variables 55| Vi
* Therefore, the sum of the squares of the t standardized random variables e <
Yi.—U (¥i.—w) ‘
Torm = =+/n —— will be a chi-square random variable with t degrees of
freedom
e Th f h H. is TRUE t _IJ-)z 2
erefore, when Hj is nYi—q i
t 5.
* The estimatorof pisy = %yl . Using this in the earlier expression in the
0
line above, we get that, when H, is TRUE, we have anzl% ~x%4
(lost one degree of freedom because of using the estimated mean)

2F= (_. __..)2 .
= 3:1 Y2 as the sample variance

* Note that when H, is TRUE, taking expectations, we get Estimator of Variance when H

(t_l)srzneans

g = (t — 1) = mean of y?_, r. I:> is TRUE is given by —

2 _
- nSmeans

 Define s2,,q4ns =

o




- _
_ —\2
(yi. _y.‘) 2 .
. P S o The equality holds only
Show that when H;, is TRUE, D = when Ho is TRUE
Let U = %Zgzlui be the average of the (true) means of the t population groups

For each population groupi =1,..,m, let Z; =y; —u;+pu_ or y; =Z;+u; — U

2
. — . . . o .
Since y; is normal with mean y and variance — Z; would also be normal with mean u

2
. o .
and variance - fori=1,..,m

zZ; _ _
Let Z=%im} =Y. —utu=y o  y=Z



Since Vi =YV =Z;

Dividing by (t — 1), we get -

Z_;(J—}l_)_/)z 2 ZI:(/U[_:U)Z
(t-1) n ‘ (t'—l) |
>0

Zero only when
H, is TRUE



Organization of the Data (One Way ANOVA)

Population group | observations/data Z]- y;j (totals) TT' (means) | sum of squares
1 Y11 Yiz - Yim Yai v 551
2 Ya Yz o Ve | 2o P 955
3 Y3 Y Yoy | s, ] 1 Y, e > SS3
t Yeu Y2t Ym, Y. v, 5S¢
v
Overall ¥ v 5S,

Sum of Squares:

Pooled Sum of Squares:

Pooled Degrees of Freedom:

SS; = Zj(yij —¥i)? = ijizj

SS, = Xi-1SS;

< v

Dot Convention:

We have used the convention whereby
the position of the . (dot) in the subscript
represents which of the two indices (in
the subscript) are being summed. For

example, for some variable a;, we will
use the following convention for
summation:

z.“ij =aj
l

where the summation is performed over
the first index i

Yt ni—t {= (m— 1)t} last equality holds for balanced data



I 2., A W n
1
The Pooled Variance 55 for One Way ANOVA is then defined as — 2
< %
- A

S =

and for balanced data, we have —

SS,
nt—t

Note that this approach to estimating the variance has not used the null hypothesis at all.
It is also possible to do this estimation using the null hypothesis! (See next slide)



Alternative Approach for Estimating the Sample Variance (One Way ANOVA)

Population group | observations/data E]- y;j (totals) TT', (means) | sum of squares
1 yin yi2 0 Yim Y3, vy SS,
2 Y21 Y22 0 Yo Ys. Yy 55,
3 Ya1 Ysz - Yans Y;, Vs, SS;
t Y Y2 o Y, Yi. ¥ 5S¢
v
Overall i v 5S,
Xy =y.)°
2 _ Li\Jd. .
Smeans =

t—1




Under the null hypothesis and based on the earlier discussions on sampling

distributions, we may deduce that the factor level (horizontal value) means
2

have a distribution with mean u and variance %
Therefore, we have an estimate for the population variance as 02 = ns2,.4ns
with (t — 1) degrees of freedom.

Of course, an alternate estimate of the population variance is 55 witht(n — 1)

degrees of freedom.
We know from the definition of the F statistic that the F value represents the

ratio of two independent estimates of a common variance.
I 2., Jln n
2
_ NSmeans 1 /\
Therefore, F.qi = 2 )

If F.,; > F,(t —1,t(n — 1)) then we reject H,



Alternative Formulation for ANOVA (leads to the same inference)

¥;)? _ v?
SSB (sum of sqgs. between groups) = };—— —

l

n; > with (t — 1) degrees of freedom

Y
SSW (sum of sgs. within groups) = Z]-Ziyizj — )i (Y;'.) with (33;n; — t) degrees of freedom

Consequently, the total sum of squaresis TSS = SSB 4+ SSW. The ANOVA table can then be
reformulated as follows -

Source d.o.ft sst | MSt = 22 | F,
. MSB
between groups t—1 SSB MSB MW If F.qp > F,(t — 1,t(n — 1)) then we
within groups | (Limi—¢) | SSW [ MSW reject Hy in favour of H; as before
total Y n—1 1SS
1 d.o.f. means degrees of freedom, SS means sum of squares, MS means mean sum of squares.



6.6.10 Example: Rice yield across varieties

An experiment to compare the yield of four varieties of rice is conducted. Each of the
plots on a test farm where soil fertility is fairly homogeneous is treated alike relative
to water and fertilizer. Four plots are randomly assigned each of the four varieties of
rice. The yield in kg/acre is recorded for each plot for this randomized experiment.
Does the data presented in the following table indicate a difference in the mean yield
between the four varieties? Choose a = 0.01.

variety | yield

1 934 1041 1028 935
2 880 963 924 946
3 987 951 976 840
4 992 1143 1140 1191

Solution:
The hypothesis is stated as follows.

Hy: m=mp=p=mun
Hi : not all varieties have the same mean.

Here y; denotes the mean yield of the i’ variety. n = 4, t = 4. The one-way ANOVA
table is printed below.




Rice variety | yield data Y; (totals) | ¥; (means) | SS;
1 934 1041 1028 935 | 3938 984.50 10085
2 880 963 924 946 | 3713 928.25 3868.75
3 987 951 976 840 | 3754 938.50 13617
+ 992 1143 1140 1191 | 4466 1116.5 22305
overall 15871 991.94 49875.75
(7. -7 2 53,
NSheans = nEUSLL = 29977.06. Further, s3 = Hi5% = 4156.31.
29977.06
Fca[ = m = 7.21.
Using the F distribution table or using Matlab, we can find Fy;(3,12) = 5.95. Since

Fear > Fy1(3,12), we reject Hy and infer that there is significant difference in yield be-
tween the different rice yield.

We would arrive at the same conclusion if we had used the alternate approach to
perform the calculation. In the alternate approach, the one-way ANOVA table is as
follows.

Source d.o.f. SS MS = af,—sf E..
between varieties | 3 | 89931.19 | 29977.06 | sigw = 7.21
within varieties 12 49875.75 4156.31
total 15 | 139806.94

SS. = (934—984.5) + (1041 —984.5)" + (1028 —984.5)’
+(935-984.5)> =10085

58, = e =3868.75
S8,y = oo =13617
SS, =(992-1116.5)> +(1143-1116.5)* + (1140—1116.5)*

+(1191-1116.5)> = 22305

&= 10085+3868.75+13617+22305

=4156.31
’ 4(4-1)

- 4{(984.5—991.94)% ..... +(1116.5—991.94)2}

4-1
=29977.06
Z(Y,._)2 Y’ 3938 +3713° +3754° + 4466 15871°
~ n, O, 4 16
_ 63331885 15871

1 =15832971-15743040 =89931

YZ

D> v =D - =4156.31
Jod i

1 n[




TABLEVI

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2%

Degrees of freedom for the denominator (v;)

4052

98.50
34.12
21.20
16.26
13.75
12.25
11.26
10.56
10.04
9.65
9.07
8.86
8.68
8.53
8.40
8.29
8.18
8.10
8.02
7.95
7.88
7.82
777
772

7.68
764

Percentage Points f, , . of the F Distribution (continued)

41
| 2 3 + 5 6 7

4999.5 5403 5625
99.00 A7 9925
30.82 2946 2871
1800 1669 1598
1327 1206 11.39
10.92 78 915
9.55 45 185
8.65 59 701
8.02 99 642
7.56 55 599
721 22 567

693 »(595) 541
670 574 521
651 556 504
636 542 489
623 529 477
611 518 467
601 509 458
593 501 450
585 494 443
578 487 437
572 482 431
566 476 426
561 472 422
557 468 418
553 464 414
549 460 411
S48 4 57 407

5764
99.30
28.24
15.52
10.97

8.75
7.46
6.63
6.06
5.64
532
5.06
4.86
4.69
4.36
444
4.34
425
4.17
4.10
4.04
3.99
3.94
3.90
3.85
3.82
3.78
1178

5859
99.33
2791
15.21
10.67

8.47
7.19
6.37
5.80
5.39
5.07
4.82
4.62
4.46
4.32
4.20
4.10
4.01
3.94
3.87
3.81
3.76
in
3.67
3.63
3.59
3.56
181

5928
99.36
27.67
14.98
10.46

8.26
6.99
6.18
5.61
5.20
4.89
4.64
4.44
4.28
4.14
4,03
393
3.84
377
3.70
3.64
3.59
3.54
3.50
3.46
3.42

330,
326

a=0.01

Degrees of freedom for the numerator (v,)
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5982
99.37
27.49
14.80
10.29

8.10
6.84
6.03
5.47
5.06
474
4.50
4.30
4.14
4.00
3.89
379
371
3.63
3.56
351
345
341
3.36
3.32
3.29
3.26
273

6022

10 | 15

6056 6106 6157
99.40 9942 99.43
2723 2705 2687
1455 1437 1420

fD.Ol, vy Vo
fa.w.vz

9

99.39

27.35

14.66

10.16  10.05
7.98 1.87
6.72 6.62
591 5.81
5.35 5.26
4.94 4.85
4.63 4.54
439 4.30
4.19 4.10
4.03 3.94
3.89 3.80
3.78 3.69
3.68 3.59
3.60 351
352 343
3.46 3:37
3.40 331
3.35 3.26
330 3.21
3.26 3.17
322 3.13
3.18 3.09
315 3.06
312 1m

9.89 9.72
1.72 7.56
6.47 6.31
5.67 5.52
5.11 4.96
4.71 4.56
4.40 425
4.16 4.01
3.96 3.82
3.80 3.66
3.67 3.52
3.55 341
346 3.31
3.37 3.23
3.30 3.15
3.23 3.09
< 3.03
3.12 2.98
3.07 2.93
3.03 2.89
2.99 2.85
2.96 2.81
2.93 2.78
2 00 2175

20

6209
99.45
26.69
14.02

9.55
740
6.16
5.36
4.81
441
4.10
3.86
3.66
351
337
3.26
316
3.08
3.00
2.94
2.88
2.83
278
2.74
2.70
2.66

2.63
2 i)

24
6235
99.46
26.00
13:93
9.47
7.31
6.07
5.28
473
433
4.02
3.78
3.59
3.43
3.29
3.18
3.08
3.00
292
2.86
2.80
275
2.70
2.66
2.62
2.58

2.55
28]

30
6261
99.47
26.50
13.84
9.38
7.23
5.99
5.20
4.65
4.25
3.94
3.70
351
3.35
3.21
3.10
3.00
2.92
2.84
278
2.72
2.67
2.62
2.58
2.54
2.50
247
244

40
6287
99.47
26.41
13.75
9.29
7.14
5.91
5.12
4.57
4.17
3.86
3.62
343
3.27
3.13
3.02
292
2.84
2.76
2.69
2.64
2.58
2.54
249
245
242

2.38
218

60
6313
99.48
26.32
13.65
9.20
7.06
5.82
5.03
4.48
4.08
3.78
3.54
334
3.18
3.05
293
2.83
2,75
2.67
2.61
2:55
2.50
245
2.40
2.36
233
229
226

120
6339
99.49
26.22
13.56
9.11
6.97
5.74
4.95
4.40
4.00
3.69
345
325
3.09
2.96
2.84
275
2.66
2.58
252
246
2.40
235
231
2.27
223

2.20
s

(e <]

6366
99.50
26.13
13.46

9.02
6.88
5.65
4.46
4.31
3.91
3.60
336
317
3.00
2.87
2.75
2.65
2.57
259
242
236
2.31
2.26
2.21
2.17
213
2.10
206




Unequal Population Sizes (Data sets are not balanced)

Though this can be done, this unbalanced approach is generally
not recommended. Whenever possible, choosing a balanced
design is recommended.

The test statistic in a balanced design tends to be relatively
insensitive to slight departures from the assumption of equal
population variances, i.e., the balanced design tends to be
more robust!



