
Module 4

Statistical Experiments



Observations of an Early Fan of Statistics  

(Mark Twain ….. who blamed this on Benjamin Disraeli):

“There are Three Kinds of Lies – Lies, Damned Lies and 
Statistics! ”   



Probability:

 From population to 
sample (deduction)

Statistics:
 From sample to the 

population (induction)

Taken from - https://www4.stat.ncsu.edu/~reiland/courses/st511/sampling%20distributions%20and%20CLT.pptx
Very interesting set of slides! Please do read when you have time



Inferences

Deductive 
Inference

Inductive 
Inference 

Conclusions based on a set of premises 
(propositions) and their synthesis

1. All men are mortal (Proposition 1)
2. Socrates is a man (Proposition 2)

⇒ 𝑆𝑜𝑐𝑟𝑎𝑡𝑒𝑠 𝑖𝑠 𝑚𝑜𝑟𝑡𝑎𝑙 (Deductive Conclusion)

Probabilistic in nature. One conducts an 
experiment and collects data. Based on this 
data, conclusions of broader applicability can 
be inferred.
Heights are measured of a sample set of men and 
women to find that in this set men are taller than 
women on the average 

⇒ 𝐼𝑛 𝑡ℎ𝑒 𝑏𝑟𝑜𝑎𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑛 𝑎𝑟𝑒 𝑡𝑎𝑙𝑙𝑒𝑟 𝑡ℎ𝑎𝑛 𝑤𝑜𝑚𝑒𝑛

Main Theme of this Module:  “Draw conclusions based on inductive 
reasoning from data obtained from statistical experiments” 



Summary of Useful Distributions for Statistics

Normal Distribution 𝑋~𝒩(𝜇, 𝜎ଶ)
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Definition of Terms used in Statistical Sampling:

Random Sample:  Consider a population from which we pick samples 
randomly to get the random variables ଵ ଶ,….. ௡ These constitute a 
random sample if they are independent and identically distributed (i.i.d) 
random variables.

Note the statistical techniques can be applied to draw proper inferences only 
if the samples ଵ ଶ,….. ௡ are drawn in a random manner from 



Definition of Terms used in Statistical Sampling:

Statistic: A statistic is a function of the observations made from a random 
sample.

A statistic is any quantity computed from values in a sample which is
considered for a statistical purpose. It is a random variable because it
depends on randomly selected samples.

Statistical purposes include things like estimating a population parameter,
describing a sample, or evaluating a hypothesis. The average (or mean) of
sample values is a statistic as well.

See example in next slide



Example: Random Sample and Statistic

Want to find out what proportion 𝑝 of 10,000 employees will buy
subscription to a Health Facility.

Since surveying all 10,000 may not be feasible, HR picks 100 employees
randomly, irrespective of gender, age, department etc. for the survey and
finds that 71 of those 100 people will buy subscriptions.

Therefore, 𝑝̂ = 0.71 is a reasonable estimate of 𝑝

Note that if we had chosen a different set of people then the value of 𝑝̂
may have been slightly different.

The statistic 𝑝̂ is therefore itself random as it a function of the random
sample



Sample Statistics:  Consider the random sample 𝑋ଵ, 𝑋ଶ,….. 𝑋௡

Some frequently used sample statistics are the following –

1. Sample Mean 𝑋ത ≔
ଵ

௡
∑ 𝑋௜ =௡

௜ୀଵ
௑భା ௑మା…..ା௑೙

௡

2. Sample Variance 𝑆ଶ ≔
ଵ

(௡ିଵ)
∑ 𝑋௜ − 𝑋ത 2௡

௜ୀଵ

This is referred to as an Unbiased Estimator of the Population Variance 𝜎ଶ. 
(See next slide for details)

3.    Sample Standard Deviation 𝑆 = 𝑆ଶ

Bienayme’s Formula: If the random variables 𝑋ଵ, 𝑋ଶ,….. 𝑋௡ are independent, then 𝑉𝑎𝑟 ∑ 𝑋௜
௡
௜ୀଵ = ∑ 𝑉𝑎𝑟 𝑋௜

௡
௜ୀଵ

Variance of the sum = 
Sum of the variances



𝑋ଵ, 𝑋ଶ,….. 𝑋௡ are i.i.d random variables, each with mean 𝜇 and variance 𝜎ଶ

Why call 𝑆ଶ (as defined in the last slide) an Unbiased Estimator of the variance?

More specifically, why is ଵ

(௡ିଵ)
∑ 𝑋௜ − 𝑋ത 2௡

௜ୀଵ an Unbiased Estimator of 𝜎ଶ whereas ଵ

(௡)
∑ 𝑋௜ − 𝑋ത 2௡

௜ୀଵ is not (i.e., it is 

a biased estimator of 𝜎ଶ)?

Consider 𝑆ଶ෢= ଵ

(௡)
∑ 𝑋௜ − 𝑋ത 2௡

௜ୀଵ (Uncorrected) Sample Variance

where 𝑋ത =
ଵ

௡
∑ 𝑋௜

௡
௜ୀଵ is the  Sample Mean    with  𝑋ത − 𝜇 =

ଵ

௡
∑ 𝑋௜ − 𝜇௡

௜ୀଵ ⇒ ∑ 𝑋௜ − 𝜇 = 𝑛 𝑋ത − 𝜇௡
௜ୀଵ
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𝑋ത (sample mean) is still 
a random variable

(𝑋௜ ⊥ 𝑋௝ 𝐸 𝑋௜ − 𝜇 = 0

Biased Estimator as it 
depend on the 𝑛, the 
number of samples

This is the Variance of the 
Sampled Mean

Will be useful later



Now consider   𝑆ଶ ≔
ଵ

(௡ିଵ)
∑ 𝑋௜ − 𝑋ത 2௡

௜ୀଵ
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The Unbiased Estimator does not show any
dependence on 𝑛, the number of samples
being considered. This makes it better to use
than the biased estimator which depends on
the number of samples and converges to the
true value of the variance only when the
number of samples tends to infinity.
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Summarizing the important points: 

𝑋ଵ, 𝑋ଶ,….. 𝑋௡ are i.i.d random variables, each with mean 𝜇 and variance 𝜎ଶ

Sample Mean   𝑋ത ≔
ଵ

௡
∑ 𝑋௜ =௡

௜ୀଵ
௑భା ௑మା…..ା௑೙

௡
𝐸 𝑋ത = μ

Variance of the Sample Mean   𝑉𝑎𝑟 𝑋ത = 𝐸 𝑋ത − 𝜇 ଶ =
ఙమ

௡

Sample Variance (Unbiased)    𝑆ଶ= ଵ

(௡ିଵ)
∑ 𝑋௜ − 𝑋ത 2௡

௜ୀଵ 𝐸 𝑆ଶ =  𝜎ଶ

Sample Variance (Uncorrected) 𝑆መଶ= ଵ
௡

∑ 𝑋௜ − 𝑋ത 2௡
௜ୀଵ 𝐸 𝑆መଶ = 1 −

ଵ

௡
𝜎ଶ

𝐸 𝑆መଶ = 𝐸 𝑆ଶ − 𝑉𝑎𝑟 𝑋ത



Sampling Strategies

Stratified Sampling: Population classified into subpopulations based on some
characteristic, sampled randomly within the sub-populations in the same
proportions as in the original population.
This is used commonly in pattern classification and machine learning applications

Clustered Sampling: Population classified into subgroups such that each subgroup
encompasses all the features of the entire population. The clusters are then
randomly selected as a group, rather than individually, to form the sample set

Systematic Sampling: A pre-defined strategy is used to pick the members of the
sample set from the whole population, e.g. every 10th (randomly decided)
member of the population is sampled sequentially.

Random Sampling:  Every member of the population equally likely to be chosen for sampling

Lot of money may ride on how you sample, e.g. in “Nielsen Ratings



Sampling Distributions: 
These are the probability distributions of a statistic and are a 
consequence of the real outcomes of a statistical experiment. 
The commonly used ones are -

• Standard normal distribution arises naturally for means or as a
consequence of the Central Limit Theorem (CLT) with known mean
𝜇 and variance 𝜎ଶ

• 𝜒ଶ distribution arises from the sum of the squares of normally
distributed random variables which have zero mean and unit
variance, i.e. 𝒩 0,1

• 𝑡 distribution used when the population variance 𝜎ଶ is not known
and only the sample variance 𝑆ଶ is known

• 𝐹 distribution used when considering the ratio of two independent
chi-square random variables 𝜒௡

ଶ and 𝜒௠
ଶ

The probability 
distributions considered 
earlier in Module 2 arose 
from theoretical 
considerations

Note that the sampling 
distribution of a statistic 
will depend on –
(a) Distribution of the 

Population     
(b) Sample Size   and     
(c) Sampling Strategy



Sampling Distributions of the sample mean and the sample variance ଶ.

If the random sample ଵ ଶ ….., ௡ is drawn from the normal distribution (i.e., 

ଵ ଶ ….., ௡
ଶ ) then by the linearity principle, we have ఙమ

௡

It turns out that and ଶ are independent random variables where this 
independence of and ଶ is a unique property of the normal distribution.

However, what is very interesting and useful is that we can state the 
asymptomatic distribution of without assuming the distribution of the 
individual samples ଵ ଶ ….., ௡ (Central Limit Theorem)



Sampling Distribution of : Central Limit Theorem

Central Limit Theorem:    Consider a random sample of size 𝑛 denoted by 𝑋ଵ, 𝑋ଶ,….., 𝑋௡ which is 
drawn from a population with mean 𝜇 and variance 𝜎ଶ where 𝐸 𝑋௜ = 𝜇,  𝑉𝑎𝑟 𝑋௜ = 𝜎ଶ. Then 

the asymptotic distribution of   𝑍 =
௑തିఓ

ఙ/ ௡
as  𝑛 → ∞ is the standard normal distribution 𝑁(0,1)

The important point here is that the asymptotic distribution of   𝒁 =
𝑿ഥି𝝁

𝝈/ 𝒏
for a large enough 𝒏, 

is normally distributed, even though 𝑿𝟏, 𝑿𝟐,….., 𝑿𝒏 may not be normally distributed 

How large an 𝑛 do we need for CLT to hold? How many samples do we need to take?

If the underlying population distribution is like a standard normal distribution, then only a few (3-5) 
samples would be enough. If the underlying distribution is very different from a normal one then 
we may need more, say ~30



Read pages 65-67 of Prof. 
Amrik’s notes for details.

The Central Limit Theorem 
(CLT) demonstrates that as the 
size of the samples is increased 
from N = 2 to N = 2000, the 
probability distribution of the 
appropriately subtracted and 
normalized sample mean

𝑍 =
௑തିఓ

ఙ/ ௡
(shown by black solid 

lines) resembles the standard 
normal distribution  (shown by 
cross-cut red lines).



Example 6.4.4    Application of CLT   (please read the book for “camera” details)

1 second

Distance measured 𝑛 times a second. After each second, the mean distance measured is reported. 

How large should 𝑛 be to be at least 95% certain that the estimated distance is within ±0.5𝑚 of the actual 
distance?

1 𝑛 − 12 𝑛𝑖 + 1𝑖

Distance Measurement Camera gives sample values   𝑋1, 𝑋2, 𝑋3, … … … , 𝑋௡ , i.e., 𝑛 samples every second, after 
which a decision is to be made. 
Each of these 𝑋௜𝑠 are i.i.d. random variables with mean 𝐸 𝑋௜ = 𝑋௜

ഥ = 𝜇 and 𝑉𝑎𝑟 𝑋௜ = 𝐸 𝑋௜
ଶ  − 𝑋௜

ഥ ଶ
= 𝜎ଶ

Note that we are given the mean 𝜇 (= 𝑑)and the variance 𝜎ଶ(= 4) of the random variables 𝑋௜𝑠.
We do not know their distribution, but we know/assume that they are i.i.d. random variables



From the measured values 𝑋1, 𝑋2, 𝑋3, … … … , 𝑋௡ we get the 
estimated mean 𝐸 𝑋ത and variance 𝑉𝑎𝑟 𝑋ത as -
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Note that 𝑋ത is a random variable whose distribution we do not actually know 
but we claim from CLT that this will be a Normal Random Variable

With 𝑍 as the standard normal r.v. with 𝑚𝑒𝑎𝑛 = 0 and 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 1, we get -
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Table of the Standard Normal Distribution (taken from your textbook)
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Study of some Sampling Distributions which either arise from the Standard Normal 
Distribution or Converge Asymptotically to the Standard Normal Distribution

(i) The chi-square distribution    𝑋~𝜒ଶ(𝜈)

This is the distribution of the sum of the squares of 𝜈 independent standard normal random variables 
𝒩(0,1) and is said to have 𝝂 degrees of freedom

2 2 2 2
1 2~ ( ) : ......... ~ (0,1); 1,2,.......,v iX X Z Z Z Z N i       

Matlab function 
chi2pdf

Matlab function 
chi2pdf

Note that 𝜒ଶ 1 is the square of standard normal random variable 𝑍~𝑁(0, 1) ; see next slide!  



Properties of the chi-square random variables:

* χଶ values are always positive (for 𝜈 > 1) or non-negative (for 𝜈 = 1)

* The shape of the pdf of χଶ random variables depends on 𝜈

* 𝐸 𝑋௩ = 𝜈 and 𝑉𝑎𝑟 𝑋௩ = 2𝜈

* 𝜒ଶ(𝜈) → 𝑁 𝜈, 2𝜈 as 𝜈 → ∞

This approximation is very good for large values of 𝜈, say for 𝜈 ≥ 30. 
This implies that for large values of 𝜈,  𝑍 ≔

௑ೡିఔ

ଶఔ
~𝑁 0,1 where 𝑋ఔ ≡ 𝜒ఔ

ଶ

• pdf of 𝜒ଶ(𝑛)

For large 𝜈(say 100), the 𝜒ଶ(𝜈)
distribution converges to 𝑁 𝜈, 2𝜈
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Application of the 𝜒ଶDistribution: Sampling Distribution of 
2

2

( 1)n S




Let 𝑋௜~𝑁 𝜇, 𝜎ଶ ; 𝑖 = 1,2, … , 𝑛 be the 𝑛 samples with 

Sample Mean 𝑋ത =
ଵ

௡
∑ 𝑋௜

௡
௜ୀଵ and 

Unbiased Sample Variance  𝑆ଶ ≔
ଵ

(௡ିଵ)
∑ 𝑋௜ − 𝑋ത ଶ௡

௜ୀଵ

Then, (௡ିଵ)ௌమ

ఙమ ~𝜒ଶ(𝑛 − 1)

The r.v. (௡ିଵ)ௌమ

ఙమ has a  𝜒ଶ distribution with (𝑛 − 1) 

degrees of freedom, i.e., it has the distribution of the sum
of squares of (𝑛 − 1) normally distributed 𝑁(0,1)
random variable each with zero mean and unit variance.

Sampling Distribution of the Sample Variance

Why is this true even though the 
summation is from 𝑖 = 1 𝑡𝑜 𝑛?



Example: The Success Rate of a Sniper

The optical scope on the marksman’s rifle has a lack of precision in each of the horizontal and vertical coordinates
that is normally distributed with mean 0 and variance of 4 sq. meters. What is his success rate to hit a target
within a radius of 0.1 m?

Solution: Let 𝑅௘௥௥
ଶ = 𝑋ଶ + 𝑌ଶdenote the square of the error to hit the target 𝑋, 𝑌~𝑁(0,4). We scale 𝑋, 𝑌 to  

𝑍ଵ = 𝑋/2 and 𝑍ଶ = 𝑌/2 to have 𝑍ଵ and 𝑍ଶ as standard normal random variables with  𝑍௜~𝑁 0,1 , 𝑖 = 1, 2. 
Therefore, 
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Therefore, the success rate of the sniper in the given situation is only 0.12%

𝜒ଶ
ଶ becomes an 
exponential 
distribution



Example: Locating a target in three-dimensional space, and the three coordinate 
errors (in meters)  of the point chosen are independent r.v.s with mean 0 and 
std. dev. 2. Find the probability that the distance between the point chosen and 
the target exceeds 3 meters.

If 𝐷 is the distance, then 𝐷ଶ = 𝑋ଵ
ଶ + 𝑋ଶ

ଶ + 𝑋ଷ
ଶ where 𝑋௜ is the error in the 𝑖𝑡ℎ

coordinate.

Since 𝑍௜ =
௑೔

ଶ
, 𝑖 = 1, 2, 3 are all standard normal rvs, it follows that

𝑃 𝐷ଶ > 9 = 𝑃 𝑋ଵ
ଶ + 𝑋ଶ

ଶ + 𝑋ଷ
ଶ > 9 = 𝑃 𝑍ଵ

ଶ + 𝑍ଶ
ଶ + 𝑍ଷ

ଶ >
ଽ

ସ

= 𝑃 𝜒ଷ
ଶ >

ଽ

ସ

= 0.522 from tables or MATLAB



(ii) The 𝑡-Distribution  (also known as the Student’s 𝑡-Distribution)  𝑇~𝑡(𝑛 − 1)

Consider when we take 𝑛 random samples 𝑌௜ from any population distribution which has 
the mean 𝜇 and variance 𝜎ଶ, where both are known.  

Then,  using CLT, as 𝑛 → ∞, we can approximate the sample mean 𝑌ത~𝑁 𝜇,
ఙమ

௡

 ⇒   𝑍 ≔
𝑌ത − 𝜇

𝜎ଶ

𝑛

~𝑁(0,1)

However, in many practical scenarios, 𝑍 may not be a suitable statistic to use as the variance 
𝜎ଶ may not be known or known only very approximately (e.g., when the sample size is small.) 

In that case, we can modify this to an alternative test statistic where the Sample Variance 𝑆ଶ

is used instead of 𝜎ଶ. This is also convenient to do, as 𝑆ଶ is knowable/computable.

Note that when there are only a few sample points, the CLT approximation may not be very 
good anyway, and it may be better to use the 𝑡 − Distribution instead.

Shifting the r.v. 𝑌ത and then 
scaling it to get the r.v. 𝑍 



We know that for the ଶ distribution, we have (௡ିଵ)ௌమ

ఙమ (௡ିଵ)
ଶ

This motivates a new test statistic as  ௡ିଵ
௓

ഖ(೙షభ)
మ

(೙షభ)

Note that here, 
both 𝑍 and 𝜒(௡ିଵ)

ଶ

are independent 
random variables

The test statistic is formally given as –

distribution with 
degrees of freedom

Easy to see that as 𝑛 →∝, this tends towards a standard normal distribution 𝑁(0,1) ⇒ When the number 
of samples is large, it may just be easier to use a normal distribution and still be accurate enough



PDF of for different 



Properties of the Distribution

1.  for 

2.  for (otherwise, undefined) and ௡

௡ିଶ
for >2

3.  For , 0< <1, for the -distribution with degrees of freedom, let ఈ,௡ be such 
that 

Then, it follows from the symmetry of the -distribution about zero, that ௡ has 
the same distribution as ௡ . 
Therefore -

,{ }     (A)n nP T t  

     
 

, , ,

,

1

1

n n n n n n

n n

P T t P T t P T t

P T t

  







         

    

, 1 ,n nt t   Typical values of 𝛼=0.05, or 0.01



comparing 
with (A)



Applications of the Distribution

Consider two different samples of sizes 𝟏and 𝟐with respective means 
𝟏 and 𝟐 and sample variances 𝟏and 𝟐

Question: Are the two means sufficiently alike to infer that both samples 
were drawn from the same population?

To answer this, suggest the test statistic 

௫̅భି௫̅మ ௡భିଵ ା(௡మିଵ)

ௌభାௌమ

௡భ௡మ

௡భା௡మ
with the -Distribution

For a more detailed description of this, read Sheldon Ross (2021) (reference text) pp 
326-338 or the book by R.A. Fisher (1925) pp 90-104 referenced in your textbook.



Example: Estimating the Spread of Viral Infection

1. The daily number 𝑿 of reported flu cases is 𝑋~𝑁(70,9).

What is the probability that on a given day, the total number of reported cases exceeds 75? 

We get 𝑃 𝑍 > 1.67 = 1 − 𝑃 𝑍 ≤ 1.67 = 0.0475 (from MATLAB, or probability tables)

P(total number of reported cases in a day >75) = 0.0475

𝑋~𝑁 70,9    ⇒      𝑍 ≔
௑ିఓ

഑

೙

=
଻ହି଻

ଷ
≈ 1.67,

𝑍 is a standard 𝑁(0,1) normal random variable

Note 𝑛=1 in this case as there is 
only one report to be considered. 

In terms of the original random variable 𝑋, we want to find 𝑃(𝑋 > 75) 

Equivalently, in terms of the random variable 𝑍, we want to find 𝑃(𝑍 > 1.67)



Example: Estimating the Spread of Viral Infection

2. The actual daily mean number of flu cases is 70 (i.e. , 𝜇௒ = 70) but it is not known if 𝑌 follows 
a normal distribution. Over 15 days, the sample mean 𝑌ത of the number of infections is 
computed. It is also observed that the Sample Standard Deviation is 𝑆 = 4.

Question: What is the probability 𝑃(𝑌ത>74) ?

Since the population variance is unknown, the test statistic used is  
௒തିఓೊ

ೄ

೙

as it depends on the sample standard deviation 𝑆 = 4. Therefore, 

   74 70
3.8730

4

1

74 0.00084461

5

Y
P P T

S
P Y

n


 
  

    









𝑇~𝑡 𝑛 − 1  𝑢𝑠𝑒𝑑 𝑤𝑖𝑡ℎ 𝑛 = 15



The Distribution   with and degrees of freedom

If 𝑋௡ = 𝜒௡
ଶ and 𝑋௠ = 𝜒௠

ଶ are two independent chi-square random variables with 𝑛 and 𝑚
degrees of freedom, respectively, then the ratio

𝐹௡,௠ ≔
௑೙/௡

௑೘/௠

is a random variable with the 𝐹 distribution with 𝑛 and 𝑚 degrees of freedom.

The corresponding pdf is -
/2
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The Distribution

Further, if we have two independent samples of size 𝑛ଵ and 𝑛ଶ from two
independent normal populations with respective variances 𝜎ଵ

ଶ and 𝜎ଶ
ଶ, then

the statistic

follows the 𝐹 𝑛ଵ − 1, 𝑛ଶ − 1 distribution

2 2
1 1
2 2
2 2

/
:

/

S
F

S





𝑆ଵ = Sample Variance of the  𝑛ଵ samples
𝑆ଶ = Sample Variance of the  𝑛ଶ samples



Properties of the Distribution

1. The 𝐹 distribution is not defined for negative values

2. The pdf of the F random variables is not symmetric in
shape over the range of the observables

3.     𝐹(1, 𝑚) ≡ 𝑡ଶ(𝑚)

4.     

2
1

1.2 2

/1
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/ /
m

m m

Z
t m F

m m



 
  

2

( , ) asnF n m m
n


 
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lim 1m

m m








Properties of the Distribution   ……..continued……..

5. The Mean and Variance of the ~𝐹(𝑛, 𝑚) distribution, i.e., 𝐹 ≔
௑೙/௡

௑೘/௠

Mean 𝐸 𝐹 =
௠

௠ିଶ
Variance 𝑉𝑎𝑟 𝐹 =

ଶ௠మ(௡ା௠ିଶ)

௡ ௠ିଶ మ(௠ିସ)

6.     Consider       𝑃 𝐹 > 𝑓ఈ,௡,௠  = ∫ 𝑓ி 𝑥 𝑑𝑥
ஶ

௙ഀ ,೙,೘
= 𝛼

𝑃 𝐹 ≤ 𝑓ఈ,௡,௠ = ∫ 𝑓ி 𝑥 𝑑𝑥
௙ഀ ,೙,೘

଴
= 1 − 𝛼

𝑃 𝐹 ≤ 𝑓ଵିఈ,௡,௠ = ∫ 𝑓ி 𝑥 𝑑𝑥
௙భషഀ,೙,೘

଴
= 𝛼

Here      𝑓ఈ,௡,௠ is the upper-tailed 𝛼-percentage point 
and        𝑓ଵିఈ,௡,௠ is the lower-tailed (1 − 𝛼)-percentage point

The lower and the upper points are related as

𝑓ଵିఈ,௡,௠ = 𝑓ఈ,௠,௡
ିଵ

Here       𝛼 is known as the level of significance
and         𝑓ఈ,௡,௠ as the critical value

𝛼 corresponds to the rejection 
region. 
The area under the pdf 𝑓ி(𝑥) to 
the right of 𝑓ఈ,௡,௠ is equal to 𝛼.

(1- 𝛼) corresponds to the 
acceptance region, the area under 
the pdf 𝑓ி(𝑥) to the left of 𝑓ఈ,௡,௠

𝑓ఈ,௡,௠𝑓ଵିఈ,௡,௠

See next slide 
for details



If 𝑓ఈ,௡,௠ is the upper-tailed 𝛼-percentage point for this distribution 𝑊~𝐹௡,௠, then 

𝑃(𝑊> 𝑓ఈ,௡,௠)= 𝛼

𝑓ఈ,௡,௠𝑓ଵିఈ,௡,௠

Therefore, 

It then follows that  

, ,
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m nP f
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 
         

Choose 𝑓ଵିఈ,௡,௠ such that

For a lower-tailed probability of 𝛼, where 𝛼 is generally small, we note that if the distribution of 𝑊 is 
𝑊~𝐹௡,௠, then the distribution of 1/𝑊 is 𝐹௠,௡.



Applications of the Distribution

1. The test statistic used for performing an analysis of variance (ANOVA) 
experiment to test the difference between means of different populations 
is an 𝐹 random variable that follows the 𝐹 distribution.

2. The 𝐹 distribution is also used to test the existence of any significant 
difference between the variances of two different groups of population.

For example,  a university academic policy may prefer that two 
instructors, co-teaching a course, should grade exams in such a way so 
as to have the same variation in their grading



Hypothesis Testing & Statistical Inference

Hypothesis testing is a form of statistical inference that uses data from a sample
to draw conclusions about a population parameter or a population probability
distribution.

First, a tentative assumption is made about the parameter or distribution. This
assumption is called the null hypothesis and is denoted by 𝐻0.

An alternative hypothesis (denoted 𝐻1 or 𝐻𝑎), which is the opposite of what is
stated in the null hypothesis, is then defined.

The hypothesis-testing procedure involves using sample data to determine
whether or not 𝐻0 can be rejected. If 𝐻0 is rejected, the statistical conclusion is
that the alternative hypothesis 𝐻1 is true.



Our objective will generally be to reduce these errors while deciding, but in many 
scenarios, reducing one type of error can increase the other type of error

Components of an experiment to test hypothesis:

The key components are –

1. Construct the statement to be tested: 𝑛𝑢𝑙𝑙 𝐻଴ 𝑣𝑠. 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 (𝐻ଵ 𝑜𝑟 𝐻௔) hypothesis

2. Identify the rejection (or critical) region to enable a decision about the hypothesis.
For example, the evidence based on the test statistic may suggest that we either reject
or fail to reject the null hypothesis.

3. Quantify the likely error in the decision arrived at in (2) in terms of a probability measure. 
This could be either a –

𝑡𝑦𝑝𝑒 − 1 𝑒𝑟𝑟𝑜𝑟 mistaken rejection of an actually  true null hypothesis
with a probability of occurrence 𝛼

or   𝑡𝑦𝑝𝑒 − 2 𝑒𝑟𝑟𝑜𝑟 mistaken acceptance of an actually  false null hypothesis
with a probability of occurrence 𝛽

See next slide



Example: Detecting a Reflected Radar Signal from an Aircraft in a Noisy Environment

Return Signal 
(from an aircraft)     

+
Ambient Noise

Type - I Error:  Missed Detection       Signal present but (Signal + Noise) < Detector Threshold
Type -II Error:  False Alarm                 No Signal   but   Noise > Detector Threshold 

From
: https://w

w
w

.sem
anticscholar.org/

𝐻଴: Enemy Aircraft Present
𝐻ଵ: No Enemy Aircraft Present



TRUE POSITIVE (TP:  1, 1) Correct Decision
TRUE NEGATIVE (TN: 0:0) Correct Decision

Type 2 Error  Probability 𝛽
FALSE POSITIVE  (FP: 1, 0) Wrong Decision 

{0 interpreted as 1}

Type 1 Error  Probability 𝛼
FALSE NEGATIVE (FN: 0, 1) Wrong Decision 

{1 interpreted as 0}

𝑌෠ is the estimate of 𝑌

Moving the threshold 
left or right forces a 

tradeoff between the 
two types of error!



Steps for Performing a Hypothesis Test

1. Specify 𝐻଴and 𝐻ଵ and an acceptable level of significance 𝛼

2. Define a sample-based test statistic (e.g., 𝑋ത, 𝑆ଶ etc.) and a rejection (or critical) 
region for 𝐻଴ that is most suitable for the experiment.

3. Collect the sample data and calculate the test statistic  

4. Make a decision to either reject or fail to reject 𝐻଴

5. Interpret the results in the language of the of the problem at hand (e.g., provide 
confidence intervals, etc.) and provide an estimate of the error in the decision.



What might determine our choice of 𝛼?              

Example (from the textbook, page 82)

A company that packages salted peanuts in 8 kg jars is interested in maintaining control
on the number of peanuts put in the jars by one of the machines in its packaging units.

Control is defined as averaging 8 kg per jar and not consistently over or under filling the
jars. To monitor this control, a sample of 16 jars is taken from the packaging line at
random time intervals and their contents weighed. The mean weight of peanuts in these
16 jars will be used to test the null hypothesis that the machine is indeed working
properly.

What may be a suitable level of significance 𝜶 for this test?

For convenience, we assume that the population standard deviation σ = 0.2 kg of the
weight of the jars is known to us.



Choosing 𝛼 for the previous example – (𝜇 = 8, 𝜎 = 0.2, 𝑁 = 16)

1. (Step 1)           Choose the hypothesis as - 𝐻଴:   𝜇 = 8       𝐻௔:   𝜇 ≠ 8

2. (Steps 2 & 3)  Choose the test statistic for this case as the Sample Mean 𝑋ത =
ଵ

ଵ଺
∑ 𝑋௜

ଵ଺
ଵ

3. (Step 4)           Suitable rejection criteria is then selected, such as 𝑋ത < 7.9 or 𝑋ത > 8.1 

4. (Step 5)           This helps in deciding the level of significance 𝛼 of the test estimated as follows -
(This may also be interpreted as the maximum Type-1 error.) 

𝛼 = 𝑃 𝑋ത < 7.9 𝑜𝑟 𝑋ഥ > 8.1  𝑤ℎ𝑒𝑛 𝜇 = 8

𝑃 𝑋ത < 7.9 = 𝑃 𝑍 =
௑തିఓ

ఙ/ ௡
<

଻.ଽି଼

଴.ଶ/ ଵ଺
= −2.0 = 𝑃 𝑍 < −2.0

= 0.0228 (e.g., from tables such as the one in the next slide)
Similarly (from symmetry about the mean)    𝑃 𝑋ത > 8.1 = 𝑃 𝑍 > 2.0 = 0.0228

Therefore, 𝛼 = P(Type-1 Error)= 𝑃 𝑋ത < 7.9 + 𝑃 𝑋ത > 8.1 =0.0456      Note that 𝑋ത < 7.9, 𝑋ത > 8.1 are disjoint

Type 1 error: The null hypothesis is true (i.e., item is within the “acceptance range”) but we make the error of rejecting it. 
The Level of Significance 𝛼 is then the probability of that happening (i.e., the probability of a type-1 error)

In this case, we are only 
interested in 𝐻଴ and the 
corresponding level of 
significance 𝛼

𝐻௔ could have 
been –
𝜇 > 8 overfilling
𝜇 < 8 underfilling





Comments on the Level of Significance 

1. There is no general rule of thumb to choose 𝛼 as we may not have a clear 
idea of what an appropriate maximum allowable type-1 error should be for 
a typical statistical experiment.

2. The level of significance 𝛼 may also be sensitive to minor changes in the 
sample statistic which will affect testing the veracity of the hypothesis 
appropriately

3. There is always a trade-off between 𝛼 (probability of type 1 error ) and 𝛽
(probability of type-2 error) as any effort to reduce one may be likely to 
increase the other. Jars are being filled all right, but we say they are not vs 
Jars are not being filled all right, but we say they are.

(See also the earlier slide on missed detection and false alarm.) 
Changing the detection threshold to reduce probability of false alarm will 
increase the probability of missed detection



Two Sample Test for Means:   Another test of hypothesis using the distribution      

Consider a case where we have two different populations that are normally distributed with
the same variance. A random variable, sampled from each population, is denoted by
𝑋ଵ~𝑁(𝜇ଵ, 𝜎ଶ) and 𝑋ଶ~𝑁(𝜇ଶ, 𝜎ଶ)

Let there be 𝑛ଵ samples taken from the first population, i.e., 𝑋ଵ௜~𝑁(𝜇ଵ, 𝜎ଶ);     𝑖 = 1, 2, … . . , 𝑛ଵ

and       𝑛ଶ samples taken from the second population, i.e., 𝑋ଶ௝~𝑁(𝜇ଶ, 𝜎ଶ);     𝑗 = 1, 2, … . . , 𝑛ଶ

1. Step 1:    Construct the hypothesis 𝐻଴:      𝜇ଵ = 𝜇ଶ

and           𝐻ଵ:      𝜇ଵ ≠ 𝜇ଶ double sided test
(alternatively,   𝜇ଵ> 𝜇ଶ  𝒐𝒓  𝜇ଵ < 𝜇ଶ)              single sided test 

Further, choose and set 𝛼

2. Steps 2 &3:    The test statistic is 𝑡 ≔
௑భ ିఓభ ି ௑మିఓమ

ௌ
భ

೙భ
ା

భ

೙మ

where 𝑆ଶ =
௡భିଵ ௌభ

మା ௡మିଵ ௌమ
మ

௡భିଵ ା ௡మିଵ

and 𝑆௝
ଶis the sample variance corresponding to the samples taken from the 𝑗𝑡ℎ population set 𝑗 = 1,2



3. Step 4:  Identify the rejection criteria. There may be three distinct cases depending on the type of test   
(double or single-sided alternate hypothesis)

• Reject 𝐻଴ in favour of 𝐻ଵ (𝜇ଵ ≠ 𝜇ଶ) if

𝑡 ≥ 𝑡
ఈ

ଶ
, 𝑛ଵ − 1 + 𝑛ଶ − 1

• Reject 𝐻଴ in favour of 𝐻ଵ (𝜇ଵ > 𝜇ଶ) if
𝑡 ≥ 𝑡 𝛼, 𝑛ଵ − 1 + 𝑛ଶ − 1

• Reject 𝐻଴ in favour of 𝐻ଵ (𝜇ଵ < 𝜇ଶ) if
𝑡 ≥ −𝑡 𝛼, 𝑛ଵ − 1 + 𝑛ଶ − 1

Note that in the above, the RHS term refers to the 𝑡 observable value from the t distribution with a 
given significance level (ఈ

ଶ
or 𝛼, as stated above) and 𝑛ଵ − 1 + 𝑛ଶ − 1 degrees of freedom.



Example (6.6.8): Choosing between two gasoline brands for optimal 
mileage and performance

While comparing two different gasoline brands, a consumer survey reveals the 
following: 

• A full tank of brand Gusto requires 4 cans and covers 546 km with a standard 
deviation of 31 km 

• A full tank of brand Jiva requires 4 cans and covers 492 km with a standard 
deviation of 26 km 

Assume that the performance parameters (mentioned above) of both brands are 
sampled from Normal distributions with equal variances.

Test if there is a significantly better value in terms of mileage offered by Gusto over 
Jiva or if the mileage of both brands are statistically similar. Choose α = 0.05. 



Solution: In the following, we use the subscript G for brand Gusto and subscript J for brand Jiva and define 
the hypothesis as follows.

𝐻଴:  𝜇ீ = 𝜇௃ 𝐻ଵ:  𝜇ீ > 𝜇௃

From samples of Gusto, we have 𝑋ீ = 546, 𝑆ீ = 31, 𝑛ீ = 4
From samples of Jiva, we have     𝑋௃ = 492, 𝑆௃ = 26,   𝑛௃ = 4

The sample variance        𝑆ଶ =
ସିଵ ଷଵమା(ସିଵ)ଶ଺మ

ସାସିଶ
⇒ 𝑆 = 28.609

Therefore,                         𝑡 𝑢𝑛𝑑𝑒𝑟 𝐻଴ =
ହସ

ଶ଼.଺଴ଽ
భ

ర
ା

భ

ర

= 2.67

The observable value 𝑡 0.05,6 = 1.9432 (either from the 𝑡 distribution look-up table or using Matlab) 
where 𝑛ீ − 1 + 𝑛௃ − 1 = 4 + 4 − 2 = 6.

Since this is a single-tailed test     𝐻ଵ:    𝜇ீ >  𝜇௃ and because     𝑡௖௔௟௖௨௟௔௧௘ௗ = 2.67 > 𝑡 0.05,6 = 1.9432

we reject 𝐻଴ in favour of 𝐻ଵ. 

In other words, brand Gusto will likely give us better mileage than brand Jiva at the level of significance 𝛼 =
0.05 (i.e., with 95% confidence level)

𝑆ଶ =
𝑛ீ − 1 𝑆ீ

ଶ + 𝑛௃ − 1 𝑆௃
ଶ

𝑛ீ − 1 − 𝑛௃ − 1

𝑡 ≔
𝑋ீ  − 𝜇ீ − 𝑋௃ − 𝜇௃

𝑆
1

𝑛ீ
+

1
𝑛௃

Reject 𝐻଴ in favour of 𝐻ଵ (𝜇ீ > 𝜇௃) if 𝑡 ≥ 𝑡 𝛼, 𝑛ீ − 1 + 𝑛௃ − 1



The Two Sample Test for Means cannot be generalized 
for more than two different population sets.

For multi-population tests, we may have to resort to 
Analysis of Variance (ANOVA) test which are described 
next



One-way ANOVA

Data collated from survey samples is denoted by 𝑦𝑖𝑗 
where the, 

- first subscript represents the 𝑖𝑡ℎ population group (𝑖 =  1, 2, … , 𝑡) 

and - second subscript represents the 𝑗𝑡ℎ observation (data point; 𝑗 =  1, 2, … , 𝑛) 
in the group 

We will consider 𝑛1, 𝑛2, … , 𝑛𝑡 observations for each of the 𝑡 population groups. 

For the special case where 𝑛1 =  𝑛2 =  …  =  𝑛𝑡 =  𝑛, we have a balanced data set

The total number of observations is ∑ 𝑛௜
௧
௜ୀଵ        (= 𝑛𝑡 in the case of balanced data)
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Null Hypothesis (One Way ANOVA)

𝐻଴:  𝜇ଵ = 𝜇ଶ…..= 𝜇௧

𝐻ଵ:  the above equalities are not satisfied

Assumption:

Data in each of the 𝑡 population groups is normally distributed 
as 𝑁 𝜇𝑖, 𝜎ଶ   𝑖 = 1, … . , 𝑡 where the variance 𝜎ଶ is the same 
across all the population groups
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𝑛𝑡 total observation points
with 𝑛 observation points in
each of the 𝑡 groups

One-Way ANOVA can also be formulated for scenarios where the number of observation points in the t groups are not same. 
(See Ross for other basic variations)

Approximation appealing to the CLT is possible



What is the approach of (One-Way) ANOVA?

Let 𝑌ത௜ and 𝑆௜
ଶ be the sample mean and sample variance of the data of the 𝑖௧௛

population group 𝑖 = 1, … , 𝑡 .

We test 𝐻଴ by comparing the values of two estimators of the common 
variance 𝜎ଶ

First Estimator: Estimates 𝜎ଶ only when 𝐻଴ is true; tends to exceed 𝝈𝟐 when 
𝑯𝟎 is not true

Second Estimator: Estimates 𝜎ଶ directly and is always valid, whether or not 
𝐻଴ is true

1 2 .......... ..........

1

2

j n

i

t

𝑦𝑖𝑗 

Define a suitable 𝐹 statistic as the ratio  ி௜௥௦௧ ா௦௧௜௠௔௧௢௥

ௌ௘௖௢௡ௗ ா௦௧௜௠௔௧௢௥
of the above two 

(independent) estimates of the common variance 𝜎ଶ.      
Ratios of two chi-sq r.v. will have the F-distribution

Calculate the  probability of this statistic ratio exceeding some acceptable 
threshold to reject 𝐻଴



To obtain estimators for the 𝑡 unknown parameters 𝜇ଵ …..  𝜇௧, we use 𝑦ത௜ . to denote the 
row average   𝑦ത௜ . = ∑

௬೔ೕ

௡
௡
௝ୀଵ

This 𝑦ത௜ . is then the sample mean of the 𝑖௧௛ population and is an estimator of the mean 𝜇௜ 𝑖 = 1, . . , 𝑡

Using this for 𝜇௜ in [A], we can see that                             ~𝜒௧௡ି௧
ଶ (chi-sq with 𝑡𝑛 − 𝑡 degrees of freedom since one    

degree of freedom is lost for each of the estimated parameters)

Note also that the mean of this chi-squared random variable will be (𝑡𝑛 − 𝑡)
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There are 𝑡𝑛 independent observations (i.i.d. normal r.v.s)    𝑦௜௝~𝑁 𝜇௜, 𝜎ଶ     𝑖 = 1, … , 𝑡  

𝑗 = 1, … . . , 𝑛 where both the mean 𝜇௜ and the variance 𝜎ଶ are unknown. 
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Has a chi-square distribution with 𝑡𝑛 degrees of freedom
𝜇௜is the true mean of the 𝑖௧௛ population, not known

Estimator of Variance not dependent on ଴



Let                                                     and                 𝐸 𝑆𝑆௉ = (𝑡𝑛 − 𝑡)𝜎ଶ 2
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Note once again that this estimator was obtained without assuming anything about the truth 
of the null hypothesis 𝐻଴

Estimator of Variance not dependent on 𝐻଴
ௌௌ೛

௡௧ି௧
for the balanced case
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Estimator of Variance when ଴ is TRUE    
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• All the population means are equal 𝜇௜ = 𝜇    𝑖 = 1, … . , 𝑡

• The 𝑚 sample means 𝑦തଵ. , ………, 𝑦ത௧. are ~𝑁 𝜇,
ఙమ

௡
and are independent 

random variables
• Therefore, the sum of the squares of the 𝑡 standardized random variables 

௬ത೔ . ିఓ

ఙమ/௡
= 𝑛 

௬ത೔ . ିఓ

ఙ
will be a chi-square random variable with 𝑡 degrees of 

freedom

• Therefore, when 𝐻଴ is TRUE   𝑛 ∑
௬ത೔ . ିఓ మ

ఙమ
௧
௜ୀଵ ~𝜒௧

ଶ

• The estimator of 𝜇 is 𝑦..ഥ =
∑ ௬ത೔.

೟
೔సభ

௧
. Using this in the earlier expression in the 

line above, we get that, when 𝐻଴ is TRUE, we have 𝑛 ∑
௬ത೔ . ି௬ത..

మ

ఙమ
௧
௜ୀଵ ~𝜒௧ିଵ

ଶ

(lost one degree of freedom because of using the estimated mean)

• Define 𝑠௠௘௔௡௦
ଶ =

∑ ௬ത೔ . ି௬ത..
మ೟

೔సభ

௧ିଵ
as the sample variance

• Note that when 𝐻଴ is TRUE, taking expectations, we get

𝑛
(௧ିଵ)௦೘೐ೌ೙ೞ

మ

ఙమ = 𝑡 − 1 = mean of 𝜒௧ିଵ
ଶ r.v.

Estimator of Variance when 𝐻଴

is TRUE is given by –

𝜎ଶ = 𝑛𝑠௠௘௔௡௦
ଶ



Show that when 𝐻଴ is TRUE , 
 2

2. ..
1

( 1)

t

i
i

y y

t n



  
  

 
  


The equality holds only 
when 𝐻଴ is TRUE 

Let      𝜇 . =
ଵ

௧
∑ 𝜇௜

௧
௜ୀଵ be the average of the (true) means of the 𝑡 population groups

For each population group 𝑖 = 1, … , 𝑚, let  𝑍௜ = 𝑦ത௜. − 𝜇௜ + 𝜇 . or   𝑦ത௜. = 𝑍௜ + 𝜇௜ −  𝜇 .

Since 𝑦ത௜. is normal with mean 𝜇 . and variance ఙ
మ

௡
, 𝑍௜ would also be normal with mean 𝜇 .

and variance ఙ
మ

௡
for 𝑖 = 1, … , 𝑚

Let 𝑍. = ∑
௓೔

௧
=௧

௜ୀଵ  𝑦ത.. − 𝜇 . + 𝜇 .= 𝑦ത.. or            𝑦ത.. = 𝑍.

⇒ 𝑦ത௜. − 𝑦ത.. = 𝑍௜ + 𝜇௜ −  𝜇 . − 𝑍.



Since 𝑦ത௜. − 𝑦ത.. = 𝑍௜ + 𝜇௜ −  𝜇 . − 𝑍.
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Dividing by (𝑡 − 1), we get -
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Organization of the Data (One Way ANOVA) 

Dot Convention:
We have used the convention whereby
the position of the . (dot) in the subscript
represents which of the two indices (in
the subscript) are being summed. For
example, for some variable 𝛼𝑖𝑗, we will
use the following convention for
summation:

෍ 𝛼௜௝ = 𝛼.௝
௜

where the summation is performed over 
the first index 𝑖

Sum of Squares: 𝑆𝑆௜ = ∑ 𝑦௜௝ − 𝒚ഥ𝒊 .
2

௝ ≡ ∑ 𝑦௜௝
ଶ −

𝒀𝒊 .
𝟐

௡೔
௝

Pooled Sum of Squares: 𝑆𝑆௣ = ∑ 𝑆𝑆௜
௧
௜ୀଵ

Pooled Degrees of Freedom: ∑ 𝑛௜
௧
௜ୀଵ − 𝑡   {= 𝑛 − 1 𝑡} last equality holds for balanced data
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The Pooled Variance 𝑠௣
ଶ for One Way ANOVA is then defined as –

𝑠௣
ଶ =

𝑆𝑆௣

∑ (𝑛௜ −  1)௧
௜ୀଵ

and for balanced data, we have –

𝑠௣
ଶ =

𝑆𝑆௣

𝑛𝑡 − 𝑡

Note that this approach to estimating the variance has not used the null hypothesis at all. 
It is also possible to do this estimation using the null hypothesis!  (See next slide)
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Alternative Approach for Estimating the Sample Variance (One Way ANOVA)

𝑠௠௘௔௡௦
ଶ =

∑ 𝒚ഥ𝒊 . − 𝒚ഥ . . 
ଶ

௜

𝑡 − 1
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Under the null hypothesis and based on the earlier discussions on sampling
distributions, we may deduce that the factor level (horizontal value) means

have a distribution with mean and variance ఙమ

௡
.

Therefore, we have an estimate for the population variance as ଶ
௠௘௔௡௦
ଶ

with degrees of freedom.

Of course, an alternate estimate of the population variance is ௣
ଶ with

degrees of freedom.
We know from the definition of the statistic that the value represents the
ratio of two independent estimates of a common variance.

Therefore, ௖௔௟
௡௦೘೐ೌ೙ೞ

మ

௦೛
మ

If ௖௔௟ ఈ then we reject ଴
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Alternative Formulation for ANOVA (leads to the same inference)

𝑆𝑆𝐵 (sum of sqs. between groups)  =  ∑ ௒೔ . 
మ

௡೔
௜  − 

௒.. 
మ

∑ ௡೔೔
with (𝑡 − 1) degrees of freedom

𝑆𝑆𝑊 (sum of sqs. within groups)  = ∑ ∑ 𝑦௜௝
ଶ  − ∑

௒೔ . 
మ

௡೔
௜௜  ௝ with ∑ 𝑛௜௜  − 𝑡 degrees of freedom

Consequently, the total sum of squares is 𝑇𝑆𝑆 = 𝑆𝑆𝐵 + 𝑆𝑆𝑊. The ANOVA table can then be 
reformulated as follows -

If 𝐹௖௔௟ > 𝐹ఈ(𝑡 − 1, 𝑡 𝑛 − 1 ) then we 
reject 𝐻଴ in favour of 𝐻ଵ as before
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Unequal Population Sizes (Data sets are not balanced) 

Though this can be done, this unbalanced approach is generally 
not recommended. Whenever possible, choosing a balanced 
design is recommended.

The test statistic in a balanced design tends to be relatively 
insensitive to slight departures from the assumption of equal 
population variances, i.e., the balanced design tends to be 
more robust!


