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Statistical Experiments

Figure 6.1: Statue of
the German polymath
Gottfried Wilhelm Leib-
niz at the Göttingen
auditorium (courtesy:
Wikimedia Commons).

Statistical experiments enable us to make inferences from data about parameters that
characterize a population. Generally speaking, inferences may be of two types, viz., deductive
inference and inductive inference.1 Deductive inference pertains to conclusions based on a set

1 Introduction to the Theory
of Statistics by Alexander
Mood, Franklin lightgray-
bill, and Duane Boes,
McGraw Hill Education
(third edition), 2017.

of premises (propositions) and their synthesis. Deductive reasoning has a definitive charac-
ter. Eg., All men are mortal (first proposition); Socrates is a man (second proposition); hence,
Socrates is mortal (deductive conclusion). On the other hand, inductive inference has a prob-
abilistic character. One conducts an experiment and collects data. Based on this data, certain
conclusions are drawn that may have a broader applicability beyond the contours of the
particular experiment performed by the researcher. This generalization of the conclusions
drawn from the particular experiment constitutes the framework of inductive reasoning.
Eg., Measurement of heights of a small group of people belonging to a certain population is
conducted. Based on the calculations of this smaller sample set; and upon finding that for
this small group the average height of men is greater than the average height of women, it is
inferred that men of this population are generally taller than the women.

The formal practice of inductive reasoning dates back to the thesis of Gottfried Wilhelm
Leibniz. He was the first to propose that probability is a relation between hypothesis and
evidence (data). His thesis was founded on three conceptual pillars: chance (probability),
possibilities (realizable random events), and ideas (generalization of inferences by induction).2 2 The Emergence of Prob-

ability by Ian Hacking,
Cambridge University Press
(second edition), 2006.

We have encountered the first two concepts in earlier chapters of this textbook. In this chap-
ter, we will delve on the third theme whereby we will discuss methods to draw conclusions
from data derived from statistical experiments based on the principles of inductive reason-
ing.

6.1 Chapter objectives

The chapter objectives are listed as follows.

1. Students will learn the concept of random samples, population parameters, statistics,
sampling distributions, and hypothesis.

2. Students will learn to deduce the probability distributions of test statistics and apply
these sampling distributions to perform different tests of hypotheses.

3. Students will learn to analyze the asymptotic behavior of certain sampling distributions.
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4. Students will learn to conduct analysis of variance (ANOVA).

5. Students will be trained to provide error estimates of inferences and confidence intervals
of model parameters in statistical experiments.

6. Students will learn to organize data sourced from reconstruction projects following nat-
ural disasters and perform an analysis of variance experiment to prioritize post-disaster
reconstruction efforts.

6.2 Chapter project: Prioritizing post-disaster reconstruction measures

6.2.1 Prologue: What factors severely impede the efficient implementation of post-disaster re-
construction efforts?

Figure 6.2: Photograph
of the 1906 San Fran-
cisco earthquake show-
ing the extent and mag-
nitude of damage to
property and mankind
(courtesy: Britannica).
The disaster brought
about over 3000 fatali-
ties and the monetary
damage was estimated
to over US $400 million
in 1906 money. The re-
lief and rehabilitation
effort involved over
4000 US federal troops
who built over 5600
makeshift houses to ac-
commodate over 20000
displaced people in the
immediate aftermath
of the disaster. Mil-
lions of dollars in aid
from around the world
and from private enter-
prises within America
poured into the city cof-
fers for rehabilitation
and reconstruction pur-
poses. The committee
entrusted with the re-
building programs had
to deal with costly land
acquisition procedures
by recommending the
use of municipal bonds
as financial guarantees.

Reconstruction projects following catastrophic disasters like floods, hurricanes, earth-
quakes, etc. are often negatively impacted by a plethora of factors. These include avail-
ability of capital investment with the local government, availability of manpower re-
sources for conducting rehabilitation and reconstruction efforts, existing laws relating to
land acquisition for building temporary and permanent housing for displaced persons,
etc.

The goal of this project is to highlight the issues and challenges in Post Disaster Re-
construction (PDR) efforts and to determine the significant differences between the issues
and challenges in different locations where PDR projects are carried out. As a chief con-
struction engineer of an international non-governmental organization, you are tasked
with devising an emergency strategy for tackling the issues concerning the efficient
implementation of PDR projects. Your decision making process relies on an extensive
database across six international cities3 where project engineers have rated the most

3 Port-au-Prince (Haiti),
Tacloban City (Philippines),
Latur (India), New Orleans
(USA), Kathmandu (Nepal)
and Bagh City (Pakistan).

pressing issues that are responsible for delay in PDR projects. Your first task (and the
objective of this project) is to identify those issues that are common across geographical
locations and address them as a priority. In order to accomplish this, you are provided
with a database of responses by construction engineers from six different international
cities. Construction engineers who have worked in these cities in the past have rated the
significance of the respective issues on a scale of 1-10 with 1 being strongly disagree and
10 being strongly agree. The issues that will be investigated are:

• shortage of relief workers and technical staff,

• land ownership and related laws,

• funding and aid for PDR projects, and

• community participation in rebuilding efforts.

In order to accomplish this task, you will use the F-statistic which is constructed by
considering two different estimates for the sample variance. The ratings of the construc-
tion engineers from different locations (as mentioned above) constitute the sample data
for this statistical experiment. Before analyzing this data, we must develop conceptual
knowledge about sampling distributions (like the F-distribution which is used in per-
forming an ANOVA experiment).
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6.3 Elements of statistical sampling

The quintessential idea is to conduct our statistical experiments on a smaller group instead
of performing them on the entire population. The manner in which this smaller group is
selected is crucial to the accuracies of the inferences drawn from the experiments. In this
section, we will study some important sampling techniques and some important theoretical
results that hold true in the asymptotic limit of large enough sample size.

6.3.1 Definition: Random sample

Consider a population P from which we will pick our sample of size n randomly. The n ran-
dom variables X1, X2, ..., Xn constitute a random sample if they are independent and identically
distributed (i.i.d.), i.e. (i) if the Xis are independent of each other, and (ii) if each of the Xis
follow the same probability distribution (identically distributed).

Figure 6.3: The out-
comes of the throws
of multiple dice are
independent and iden-
tically distributed. The
outcome of each throw
is independent of the
other because the kine-
matic motion of the
hands are not depen-
dent on one another as
they belong to different
individuals. Yet, there
is a certain sameness
about the structure and
motion of the hands
(and the shape of the
dice) due to which
the outcome of each
throw results in one
of six numbers with
the same probability 1

6
(identically uniformly
distributed).

If the sample is not chosen in a random manner from P, then the statistical techniques,
that we will learn in this chapter, will not apply. Further, the inferences drawn from the
experiments may be incorrect.

6.3.2 Definition: Statistic

A statistic is a function of the observations made from a random sample. It is a random
variable because it depends on the randomly selected sample.

Figure 6.4: Random
sampling of the whole
population of factory
workers enables us
to make observations
and estimates from a
smaller representative
group. We can then
make inference about
the whole population.

6.3.3 Example: Random sample and statistic

Let us consider that we want to know the proportion p of people in a certain orga-
nization who are interested to avail health coupons to obtain access to a nearby gym
facility. There are over 10, 000 employees in the organization and soliciting an answer
from every individual may not be logistically practical. So the organization randomly
picks 100 people irrespective of gender, age, departmental affiliations, etc. and records
the preferences of each member of this sample. It then computes and finds that 71
of these 100 people intend to avail the health coupons. Therefore, p̂ = 0.71 may be
regarded as a reasonable estimate of p. It may be noted that had we chosen a different
set of 100 people, the value of p̂ might have been slightly different. So the statistic p̂ is
itself random as it is a function of the random sample.

6.3.4 Example: Sample statistics

Consider a random sample X1, X2, ..., Xn. Some frequently used sample statistics are

1. sample mean, X := X1+X2+···+Xn
n ,

2. sample variance, S2 := 1
n−1 ∑n

i=1(Xi − X)2, and

3. sample standard deviation, S =
√

S2.

It turns out that dividing by (n− 1) makes the sample variance an unbiased estimator of
the population variance σ2.4 In fact, out of n degrees of freedom that is available from the n

4 S2 is an unbiased estimator
of σ2, i.e. E(S2) = σ2.



66 practical introduction to probability and statistics

observables x1, x2, ..., xn; one unit of information is already used in the computation of X.
Hence we are left with (n− 1) degrees of freedom, thereby using (n− 1) as the normaliza-
tion factor in the denominator makes sense.

Figure 6.5: Probabilistic
sampling strategies:
stratified sampling
(top), clustered sam-
pling (middle), and
systematic sampling
(bottom).

6.3.5 Sampling strategies

Different sampling strategies may be employed depending on the experimental context.
Broadly speaking, sampling strategies may be classified into two categories, viz., non-
probabilistic sampling (eg. voluntary participation, convenience sampling based on availability
of experimental participants, etc.), and probabilistic sampling. Some frequently used proba-
bilistic sampling strategies are summarized below.5

5 In many applications,
re-sampling techniques like
jackknife or bootstrap may be
necessary.

1. Random sampling: Here, every member of the population has an equal probability of
being included in the sample set whose size may be predefined.

2. Stratified sampling: Here, the entire population is classified into sub-populations based
on certain characteristics. Sampling is performed randomly from within the sub-populations
such that the groups are maintained in the same ratio in the sample set as they were in
the original population. This type of sampling is most commonly used in pattern classifi-
cation and machine learning applications.

3. Clustered sampling: In this strategy, the entire population is classified into sub-groups
in a manner such that each of these sub-groups encompass all the features of the whole
population. Thereafter, the clusters are randomly selected as a group, rather than individ-
ually, to form the sample set.

4. Systematic sampling: A pre-defined strategy is used to pick the members of the sample
set from the whole population; eg. every 10th (randomly decided) member of the popula-
tion is sampled sequentially.

6.3.6 Definition: Sampling distribution

The probability distribution of a statistic is called a sampling distribution.
The named probability distributions like Poisson, Bernoulli, exponential, etc., that were

introduced in chapter three, are a consequence of theoretical considerations.6 However, the 6 Eg., the probability density
function of the exponential
random variable can be
derived theoretically from
the Poisson distribution. We
will consider the random
variables: X ∼ Poisson(λ)
and T ∼ exp(λ), where λ is
the rate parameter. Since T is
the inter-arrival time between
two Poisson arrivals, P(T > t)
≡ P(X = 0 in t time units)
= e−λ × e−λ × · · · × e−λ︸ ︷︷ ︸

t times
= e−λt. Therefore, P(T ≤ t)
= 1− P(T > t) = 1− e−λt.
Further, fT(t) = d

dt P(T ≤ t)
= λe−λt. Thus, we see that
the exponential probability
distribution can be entirely
constructed from the Poisson
distribution based solely on
theoretical arguments.

sampling distributions are a consequence of real outcomes of a statistical experiment. We
will study different types of sampling distributions and their applications in this chapter. We
list here some of the most frequently used sampling distributions.

• Standard normal distribution.

• χ2 distribution.

• t distribution.

• F distribution.

It is necessary to emphasize that the sampling distribution of a statistic depends on the
following:

→ distribution of the population,
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→ sample size, and

→ sampling strategy.

6.4 Sampling distributions

We will begin with the sampling distributions of the sample mean X and the sample vari-
ance S2. If the random sample is drawn from the normal distribution, i.e. X1, X2, ..., Xn ∼
N(µ, σ2), then clearly by the linearity principle, we have X ∼ N(µ, σ2

n ).7 Notably, X and 7 This result can be easily de-
duced by using the method of
moment generating functions
that we studied earlier in
chapter three.

S2 are independent random variables.8 It turns out that this independence of X and S2 is a

8 This result is a consequence
of Basu’s theorem because
X is a complete sufficient
statistic for estimating the
model parameter µ and S2 is
an ancillary statistic whose
distribution does not depend
on µ. The independence of
X and S2 can also be proven
by using Cochran’s theorem.
A detailed study of these
techniques and concepts can
be found in more advanced
textbooks on statistics (cf.
pg. 289 and pg. 572 in Sta-
tistical Inference by George
Casella and Roger L. Berger,
Duxbury-Thomson Learning
(second edition), 2002.)

unique property of the normal distribution. We will return to the distribution of the sample
variance later in this section. Now, we will state our first result on the asymptotic distribu-
tion of X without assuming the distribution of the samples X1, X2, ..., Xn. This is one of the
most fundamental result in the theory of statistics.

6.4.1 Sampling distribution of X: Central Limit Theorem (CLT)

Consider a random sample of size n denoted by X1, X2, ..., Xn which is drawn from a popu-
lation of mean µ (i.e. E(Xi) = µ, i = 1, 2, ..., n) and variance σ2 (i.e. Var(Xi) = σ2). Then the

asymptotic distribution of Z = X−µ

σ/
√

n as n→ ∞ is the standard normal distribution N(0, 1).

Most importantly, X1, X2, ..., Xn need not be normally distributed. Many random variables
encountered in several science and engineering applications are normally distributed due to
the effect manifested by the CLT.

6.4.2 How large a sample suffices for the CLT result to take effect?

This is a rather subjective question. If the underlying population distribution is much alike
the standard normal distribution, then only a few (say 3 to 5) samples are required to get a
decent normal approximation of the sample mean. However, if the population distribution
is very different from the standard normal distribution, then about 30 samples will suffice to
obtain a good normal approximation for the sample mean.

6.4.3 Computer illustration of CLT

In order to fully comprehend the meaning of the above result, we provide a computer sim-
ulated random sampling of exponentially distributed random variables with rate parameter
µ = 3. We will notice that with an increasing number of samples/realizations of the simu-
lated experiment, the distribution of the sample means (mean subtracted and appropriately
normalized)9 resembles the standard normal distribution. 9 The computer simulation

shows that X−µ

σ/
√

n ∼ N(0, 1) as
n→ ∞. Here Xi ∼ exp(µ), for
all i = 1, 2, ..., n.

The Matlab routine for conducting the aforementioned computer experiment is presented
below.

mu = 3; var = mu^2; k=1; numsamples = [2 5 25 2000];

for N = numsamples

ni = [];

for i=1:N

ni = [ni; exprnd(mu,1,10000)];
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end

n = (mean(ni)-mu)/(sqrt(var)/sqrt(N)); x = -max(n):0.1:max(n);

subplot(length(numsamples),1,k);

h=histogram(n,’Normalization’,’probability’); hold on;

h.BinWidth = 1.0;

[yn,xn]=ksdensity(n);

plot(xn,yn,’k’,’LineWidth’,2); hold on;

pd = makedist(’Normal’); pdf_normal = pdf(pd,x);

plot(x,pdf_normal,’rx-’,’LineWidth’,2);

xlabel(,’FontSize’,16); ylabel(’probability distribution’,’FontSize’,16);

legend(’histogram of samples from exponential distribution’,...

’pdf of distribution with N samples’,’standard normal distribution’,’FontSize’,16);

k=k+1;

end

It is necessary to comment on some of the Matlab commands used in the above routine.

→ numsamples = [2 5 25 2000]: Here, numsamples is a variable array which is assigned the
values of the size of the experiments (number of realizations) that will be considered.

→ exprnd(mu,1,10000): It returns an array of random numbers of dimensions 1× 10000
chosen from the exponential distribution with mean parameter mu.

→ ni = [ni; exprnd(mu,1,10000)]: ni is a two-dimensional array of dimensions N ×
10000 that stores the N realizations of the exponentially distributed random variables.
Each realization (sample) is an array of 10000 observables.

→ histogram(n,’Normalization’,’probability’): This function returns a histogram of
the elements in the array n, the resulting histogram is normalized in such a way that the
cumulative area covered by the histogram is normalized to unity.

→ h.BinWidth = 1.0: In conjunction with the normalization mode mentioned in the above
paragraph, the width of each bin in the histogram must be set to unity to ensure compli-
ance with the second axiom of probability (axiom of unitarity).

→ ksdensity(n): It computes a probability density estimate of the sample stored in the
array n.

→ pdf(makedist(’Normal’),x): This function generates the probability density function of
a standard normal distribution for the observable variables in the range specified by x.

It is essential to emphasize that irrespective of the type of the probability distribution of

the population, the sampling distribution of Z := X−µ

σ/
√

n tends to the standard normal distri-
bution. This can be easily verified by replacing the Matlab function exprnd with any other
probability distribution, eg., Poisson, Geometric, etc. For more details, readers may check
out the Matlab documentation page for random10 for generating random variables (random 10 Type >>doc random in the

Matlab command window
and hit return.

samples) drawn from different probability distributions. The results of the simulation exper-
iment are shown below in Figure 6.6.
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Figure 6.6: The Central
Limit Theorem (CLT)
demonstrates that as
the size of the samples
is increased from N = 2
to N = 2000, the prob-
ability distribution of
the mean subtracted
and appropriately nor-
malized sample mean
(shown by black solid
lines) resembles the
standard normal dis-
tribution (shown by
cross-cut red lines).

6.4.4 Example: Rating of frontal cameras of an autonomous vehicle (application of
CLT)

Safety features of a self-driving car are of paramount importance to manufacturers.
This is the reason why modern autonomous cars have anywhere between 10 to 30

cameras on board. A certain self-driving car has three frontal cameras which are
activated when the car gets close to a vehicle or object in front of the car. This is es-
pecially useful in a traffic jam and/or on the highway when a certain distance must
be maintained between two successive cars. During foggy winter conditions, mea-
surement of the exact distance of the car (d meters (m)) from the one in front, by a
single input from a camera, may become less reliable. Therefore, the system must have
built-in redundancies whereby multiple frames per second (fps) must be obtained
successively by the three frontal cameras. Each of these measurements (all made every
second) may be regarded to be an independent random variable with mean d m and
standard deviation 2 m based on multiple statistical tests performed by the manu-
facturer. Then the average of all these measurements must be taken and processed
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per second by the electronic computer of the car to make the autonomous technology
more accurate. What must be the fps rating of the frontal camera unit of the car so
that the manufacturer is at least 95% certain that the estimated information is accurate
to within ±0.5 m?

Solution: Consider that the requisite fps rating of the frontal camera system is n.
Then, if X is the mean measurement made every second, then it is reasonable to as-
sume that X ∼ N(d, 4

n ) based on the CLT (cf. note below). Therefore,

P(−0.5 < X− d < 0.5) = P
( −0.5

2/
√

n
<

X− d
2/
√

n
<

0.5
2/
√

n

)
≈

direct consequence of CLT

P
(
−
√

n/4 < Z <
√

n/4
)

=

see caption of Figure 6.7 below.

2P(Z <
√

n/4)− 1, (6.1)

where Z is the standard normal random variable. This means we must have 2P(Z <√
n/4)− 1 ≥ 0.95 or equivalently P(Z <

√
n/4) ≥ 0.975. Following the standard nor-

mal distribution table shown in Figure 6.8, since we have P(Z < 1.96) = 0.975; n must
be chosen such that

√
n/4 ≥ 1.96 or n ≥ 61.46. This means that the fps rating of the

frontal camera system of the autonomous car must be at least 62.
Figure 6.7: The shaded
portion of the distri-
bution N(0, 1) shows
P(Z < m), m > 0.
P(−m < Z < m) = (1−
2q) = 1− 2

{
1− P(Z <

m)
}
= 2P(Z < m)− 1.

Note: In addition to the statement of the CLT, we can verify that

E(X) =
E(X1) + E(X2) + · ·+E(Xn)

n
= µ, and Var(X) =

∑n
i=1 Var(Xi)

n2 =
nσ2

n2 = σ2/n

.

Figure 6.8: An excerpt
from the standard nor-
mal distribution table
compatible with the
shaded portion of the
probability distribution
shown in Figure 6.7.
In the example dis-
cussed in section 6.4.4,
m = 1.96. P(Z < 1.96)
can be computed from
the table by reading off
the entry corresponding
to (1.9, 0.06) = 0.9750.
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6.4.5 Sampling distributions derived from the standard normal distribution

In this section, we will study a few sampling distributions which either arise from the stan-
dard normal distribution or converge to the standard normal distribution asymptotically.
These sampling distributions will be extensively used for performing statistical experiments
and testing hypotheses.

(i) The chi-square distribution: The chi-square distribution, denoted by χ2(ν), has ν de-
grees of freedom. It is the distribution of sum of squares of normally distributed random
variables.

Xν = Z2
1 + Z2

2 + · · ·+ Z2
ν ; where Zi ∼ N(0, 1); i = 1, 2, · · ·, ν. (6.2)

Then Xν ∼ χ2(ν). The Matlab routine for simulating the χ2 distribution based on the above
definition is given below along with the results in Figure 6.9.

x = [0:0.1:20]; num_max = 5000;

nu = 5; mu = 0; sigma = 1;

for k=1:num_max

X = 0;

for i=1:nu

Z_gauss = normrnd(mu,sigma);

X = X + Z_gauss^2;

end

X_chi(k) = X;

end

h = histogram(X_chi,’Normalization’,’probability’); hold on;

h.BinWidth = 1.0;

[yn,xn]=ksdensity(X_chi);

plot(xn,yn,’k’,’LineWidth’,2); hold on;

fx_chi = chi2pdf(x,nu);

plot(x,fx_chi,’m--’,’LineWidth’,4);

legend([’histogram of samples from X_{\nu} = ’ ...

’Z_1^2 + Z_2^2 + \cdot \cdot + Z_{\nu}^2; where Z_i \sim N(0,1), i=1,2,...,\nu’],...

’pdf of X_{\nu}’,’pdf of \chi^2(\nu)’,’FontSize’,16);

xlabel(’x’,’FontSize’,16);

ylabel(’f_{X_\nu}(x)’,’FontSize’,16);

title(’Number of degrees of freedom, \nu = 5’,’FontSize’,16);

xlim([0 25]);

In Figure 6.9, the probability density function (pdf) of Xν based on five thousand realiza-
tions of the ν-tuple random sample {Z1, Z2, · · ·, Zν} (solid lines) is compared against the χ2

pdf generated by the Matlab function chi2pdf (broken lines). It may be easily verified that
the accuracy of the pdf of Xν generated from multiple realizations of {Zi}i=1,2,...,ν increases
by considering a larger number of realizations (i.e. by increasing the value of num_max in the
above Matlab routine).
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Figure 6.9: Computer
simulation of the χ2

distribution with ν

degrees of freedom.

(i.i) Properties of chi-square random variables

1. χ2 values are always positive (for ν > 1) or non-negative (for ν = 1).

2. The shape of the pdf of χ2 random variables differs with ν.

3. E(Xν) = ν and Var(Xν) = 2ν.
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4. χ2(ν) → N(ν, 2ν) as ν → ∞. The approximation is very good for ν ≥ 30. This entails that
for large values of ν, Z := Xν−ν√

2ν
∼ N(0, 1) where Xν ≡ χ2

ν ∼ χ2(ν). An illustration of this
property is demonstrated below in Figure 6.10 with ν = 100 degrees of freedom. The pdf
is generated based on one hundred thousand realizations.

5. χ2(n) ≡ Γ(α, λ) when the shape parameter α = n/2 and the rate parameter λ = 1/2.11 11 The pdf of χ2(n) dis-
tribution is fX(x) =

( 1
2 )

n
2 x

n
2 −1e−

x
2

Γ( n
2 )

, x > 0.
Further, recall that Γ(1, λ) ≡ exp(λ). So, when n = 2, the χ2 distribution collapses to the
exponential distribution with rate λ = 1/2, i.e. χ2(2) ≡ exp(1/2). Here, Γ(α, γ) refers to
the gamma probability distribution, whereas Γ(α) refers to the gamma function.

Figure 6.10: For large
values of ν (say 100),
the χ2(ν) distribution
converges to a normal
distribution with mean
ν and variance 2ν.

(i.ii) Application of χ2 distribution: sampling distribution of (n−1)S2

σ2

Let Xi ∼ N(µ, σ2); i = 1, 2, ..., n; then (n−1)S2

σ2 ∼ χ2(n − 1) where S2 := ∑n
i=1(Xi−X)2

(n−1) is
the unbiased sample variance. This result is elucidated here by simulating a large number of
normally distributed random variables and subsequently, computing the sample variance as
shown in Figure 6.11. The Matlab code for this simple simulation is furbished below.

mu = 10; var = 2;

s = sqrt(var);

n=5; max_realizations = 100000;

for realizations = 1:max_realizations

y = s.*randn(n,1) + mu;

sample_var(realizations) = (sum((y - mean(y)).^2))/(length(y)-1);

end

weighted_sample_var = (n-1)*sample_var/s^2;

h=histogram(weighted_sample_var,’Normalization’,’probability’); hold on;

h.BinWidth = 1.0;
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[yn,xn]=ksdensity(weighted_sample_var,’Support’,’positive’);

plot(xn,yn,’k’,’LineWidth’,2); hold on;

x=[0:30];

fx_chi = chi2pdf(x,n-1);

plot(x,fx_chi,’m--’,’LineWidth’,4);

legend(’histogram of $\frac{(n-1)S^2}{\sigma^2}$ based on 100000 realizations’,...

’pdf of $\frac{(n-1)S^2}{\sigma^2}$’,’pdf of $\chi^2(n-1)$’,...

’Interpreter’,’latex’,’FontSize’,25);

xlim([min(xn) max(x)]);

xlabel(’x’,’FontSize’,25);

ylabel(’probability density function’,’FontSize’,25);

title(’Demonstrating $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ with n = 5’,...

’FontSize’,25,’Interpreter’,’latex’);

Figure 6.11: Sampling
distribution of the
sample variance.

The above result can be proved more rigorously by using the method of moment gener-
ating functions. Interested readers may refer to the bibliography provided at the end of this
chapter. We will omit the presentation of the proof here.

(i.iii) Example: success rate of a sniper

A sniper can locate a target at a distance of 2 kms. In desert conditions and/or foggy
weather, the optical scope on the marksman’s rifle has an imprecision in each of the
horizontal and vertical coordinates that is normally distributed with mean zero and
variance of four sq. meters. What is his success rate to hit a target within a radius of
0.1 m?
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Solution: Let R2
err = X2 + Y2 denote the square of the error to hit the target, X, Y ∼

N(0, 4). Consider Z1 = X/2 and Z2 = Y/2 whence we have Zi ∼ N(0, 1), i = 1, 2.
Now, following equation 6.2, we have,

P(R2
err < 0.01) = P(Z2

1 +Z2
2 < 0.01/4 = 0.0025) = P(χ2

2 < 0.0025) = 1− e−
0.0025

2 = 0.0012.

The penultimate equality above arises from the fact that χ2
2 ∼ exp(λ = 1/2) as

stated above in subsection (i.i.5) of section 6.4.5. Alternatively, the equality may also
be arrived at by using the Matlab command: >> chi2cdf(0.0025,2). Therefore, the
success rate of the sniper under the given adverse atmospheric condition drops to
0.12%.

(ii) The t distribution:12 Let us recall from the Central Limit Theorem that if we have ran- 12 It is also known as the
Student’s distribution.dom samples Yi of size n from any population distribution with mean µ and variance σ2,

then Y ∼ N(µ, σ2

n ) as n→ ∞. This implies Z := Y−µ

σ/
√

n ∼ N(0, 1).

Figure 6.12: The pdf
of the t distribu-
tion is symmetric
about the origin, i.e.
−tα,n = t1−α,n = tα,n.

However, in most practical cases, the population variance σ2 is unknown. This limits the
utility of Z as a suitable statistic for conducting experiments. This entails that we consider
an appropriate test statistic where the population variance σ2 is replaced by the sample vari-
ance S2 which is a knowable (computable) quantity. From our discussion on χ2 distribution,

since we know that (n−1)S2

σ2 ∼ χ2(n− 1), let us consider a test statistic defined as follows:

T ≡ Tn−1 :=
Z√

χ2
(n−1)
n−1

. (6.3)

Here Z and χ2
(n−1) are independent random variables. The above test statistic T simplifies to

T = Y−µ

S/
√

n ∼ t(n− 1).13 This defines the t distribution with (n− 1) degrees of freedom.14 13 For clarity, here χ2(ν) refers
to the chi-square distribution
with ν degrees of freedom
and χ2

ν ≡ Xν refers to the
random variable that is
sampled from the χ2(ν)
distribution. The random
variable T follows the t
distribution with (n − 1)
degrees of freedom.
14 We will not present here
the actual expression of the
pdf of the t-distribution
because it is complicated.
Interested readers may refer
to the texts mentioned in the
bibliography of this chapter.

(ii.i) Properties of t distribution

1. t(n) n→∞−−−→ N(0, 1).

2. E(T) = 0, for n > 1 (otherwise, undefined), and Var(T) = n
n−2 , for n > 2 (∞ for

1 < n ≤ 2).

3. For some α ∈ [0, 1], let us consider the observable quantity tα,n such that P(Tn > tα,n) = α.
Now, given that the bell-shaped t distribution is a symmetric curve about the mean zero
(cf. Figures 6.12 and 6.13), we can easily establish the following symmetry relation.

− tα,n = t1−α,n. (6.4)

The first property stated above is illustrated through a Matlab routine given below.

x = [-6:0.1:6];

for nu=1:1000

plot(x,tpdf(x,nu)); hold on;

end

pd = makedist(’Normal’); pdf_normal = pdf(pd,x);
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plot(x,pdf_normal,’rd:’,’LineWidth’,4);

xlabel(’observables’,’FontSize’,24); ylabel(’probability density function’,’FontSize’,24);

set(gca,’FontSize’,24)

Figure 6.13: The thin
solid curves represent
the pdf of the t distri-
bution with varying
degrees of freedom.
The solid vertical ar-
row points in the di-
rection of increasing
degrees of freedom.
The checkered-dotted
curve represents the
pdf of the standard
normal distribution.
t(n) n→∞−−−→ N(0, 1).

Besides the asymptotic convergence of the t-distribution to the standard normal distri-
bution, the above result also demonstrates that the t-distribution is mostly suitable for data
with bell-shaped distribution.

(ii.ii) Applications of t distribution

1. Let us consider two different samples of sizes n1 and n2 with means x1 and x2, respec-
tively. We may want to know if the two means are sufficiently alike to warrant an infer-
ence that both the samples are drawn from the same population. In such a case, T :=
(x1−x2)

√
n1+n2−2√

S1+S2

√
n1n2

n1+n2
is a suitable test statistic that follows the t distribution. Here S1

and S2 are the respective sample variances.

2. The t distribution also finds applications in statistical experiments to find the significance
of differences between regression coefficients obtained from different samples.

We will study the first application in greater detail in this chapter. We will re-visit regression
analysis in a subsequent chapter of this book. Interested readers may refer to the seminal
work by R. A. Fisher to know more about the applications of the t distribution.15 15 Applications of Student’s

Distribution by R. A. Fisher,
Metron, 5, pp. 90-104, (1925).

(ii.iii) Example: Estimating the spread of viral infection

1. Consider that the daily number of reported influenza cases in a village is denoted
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by X. X ∼ N(70, 9). What is the probability that on a given day the total number of
reported cases exceeds seventy five?

2. Now, consider that the actual daily mean number of influenza cases in the village
is seventy, i.e. µY = 70. It is not known if Y follows a normal distribution. Specif-
ically, over a period of fifteen days, the sample mean of number of infections Y is
computed. Additionally, it is observed that the sample standard deviation is four
reported cases. What is the probability that Y is greater than seventy four?

Solution:

1. X is sampled from a population which is normally distributed with mean 70 and
variance 9. So Z := X−µ

σ/
√

n = 75−70
3 ≈ 1.67, Z ∼ N(0, 1). In this case, n = 1.

Therefore, P(Z > 1.67) = 1− P(Z ≤ 1.67) = 0.0475. This result may be computed
by using the standard normal distribution look-up table or by using the following
Matlab command.

>> 1-cdf(’Normal’,1.67,0,1)

2. In this case, since the population standard deviation is unknown, an appropriate

test statistic is T := Y−µY
S/
√

n ∼ t(n − 1) which depends on the sample standard
deviation S.

P(Y > 74) = P
(

Y− µ

S/
√

n
>

74− 70
4/
√

15

)
= P(T > 3.8730) = 0.00084461.

The above may be computed by using the Matlab command:

>>1-tcdf(3.8730,14)

It may be carefully noted that we have used (n− 1) = (15− 1) = 14 degrees of free-
dom to compute the probability because T ∼ t(n− 1).

(iii) The F distribution:16 If Xn = χ2
n and Xm = χ2

m are two independent chi-square random 16 It is also known as the
Fisher–Snedecor distribution.variables with n and m degrees of freedom respectively. Then the ratio

F :=
Xn/n
Xm/m

(6.5)

is a random variable which follows the F distribution. Further, if we have two independent
samples of sizes n1 and n2 from two independent normal populations with variances σ2

1 and
σ2

2 respectively, then the statistic

F :=
S2

1/σ2
1

S2
2/σ2

2
(6.6)

follows the F(n1 − 1, n2 − 1) distribution.
Figure 6.14: The pdfs of
the F distribution with
different pairs of n and
m are generated using
the Matlab command
>>plot(x,fpdf(x,n,m));

where x takes the val-
ues of the observables.

(iii.i) Properties of F distribution

1. The F distribution is defined for non-negative values.

2. The pdf of the F random variables is not symmetric in shape over the range of the ob-
servables (cf. Figure 6.14).
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3. F(1, m) ≡ t2(m) (cf. Figure 6.15).

Figure 6.15: Computer
simulation demonstrat-
ing F(1, m) ≡ t2(m).

The Matlab routine to demonstrate this result computationally is given below.

x = [0:0.1:6];

n=1; m=10;

nu = m;

max_realizations = 10000;

for i=1:max_realizations

t_rv = trnd(nu);

tsq_rv(i) = (t_rv)^2;

end

h = histogram(tsq_rv,’Normalization’,’probability’); hold on;

h.BinWidth = 1.0;

[yn,xn]=ksdensity(tsq_rv);

plot(xn,yn,’k’,’LineWidth’,4); hold on;

plot(x,fpdf(x,n,m),’m:’,’LineWidth’,4);

xlim([0 max(x)]);

xlabel(’observables’);

ylabel(’probability distribution’);

set(gca,’FontSize’,60);

legend(’\bf histogram of 10,000 realizations of $t^2(10)$ random variables’,...

’\bf pdf of $t^2(10)$ samples’,...

’\bf pdf of $F(1,10)$’,’Interpreter’,’latex’,’FontSize’,33);

4. F(n, m)
m→∞≡ χ2(n)

n (cf. Figure 6.16).
The Matlab routine to demonstrate this result computationally is given below.

Figure 6.16: Computer
simulation demonstrat-
ing F(n, m)

m→∞≡ χ2(n)
n .

x = [0:0.1:6];

n=3; m=1000; m1=1; m2=3;

nu = n;

max_realizations = 10000;

for i=1:max_realizations

X_chisq(i) = chi2rnd(nu)/nu;

end

h = histogram(X_chisq,’Normalization’,’probability’); hold on;

h.BinWidth = 1.0;

[yn,xn]=ksdensity(X_chisq);

plot(xn,yn,’k’,’LineWidth’,4); hold on;

plot(x,fpdf(x,n,m1),’m:’,x,fpdf(x,n,m2),’m-.’,’LineWidth’,4); hold on;

plot(x,fpdf(x,n,m),’m--’,’LineWidth’,4);

xlim([0 max(x)]);

xlabel(’observables’);

ylabel(’probability distribution’);

set(gca,’FontSize’,60);

legend(’\bf histogram of 10,000 realizations of $\frac{\chi^2(3)}{3}$ random variables’,...
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’\bf pdf of $\frac{\chi^2(3)}{3}$ samples’,’\bf pdf of $F(3,1)$’,...

’\bf pdf of $F(3,3)$’,’\bf pdf of $F(3,1000)$’,’Interpreter’,’latex’,’FontSize’,30);

5. E(F) = m
m−2 and Var(F) = 2m2(n+m−2)

n(m−2)2(m−4) where n is the degrees of freedom corresponding
to the numerator, and m is the degrees of freedom corresponding to the denominator.

6. Consider P(F > fα,n,m) =
∫ ∞

fα,n,m
fF(x)dx = α and P(F < f1−α,n,m) =

∫ f1−α,n,m
0 fF(x)dx = α.

Here fα,n,m is the upper-tailed α-percentage point and f1−α,n,m is the lower-tailed (1 − α)-
percentage point. The lower-tailed percentage point can be found in terms of the upper-
tailed percentage point as follows: f1−α,n,m = 1

fα,m,n
. Here α is known as the level of signifi-

cance.17 fα,n,m is the critical value. We will re-visit α in a latter section of this chapter when 17 α corresponds to the rejec-
tion region. The area under
the curve fF(x) to the right of
fα,n,m is equal to α; the area
under the curve fF(x) to the
left of the curve fα,n,m is equal
to 1− α and corresponds to
the acceptance region.

we discuss methods to test hypotheses.

(iii.ii) Applications of F distribution

1. The test statistic used for performing an analysis of variance (ANOVA) experiment to test
the difference between means of different populations is an F random variable that fol-
lows the F distribution.

2. F distribution is also used to test the existence of any significant difference between the
variances of two different groups of population. Eg., (i) a university academic policy
may prefer that two instructors, co-teaching a course, grade exams in such a way so as
to have the same variation in their grading; (ii) to ensure a tight fit, a manufacturing unit
may require the variation in the lid and the container to be similar (cf. definition of F in
equation (6.6) and Figure 6.17).

Figure 6.17: The vari-
ation in the pattern of
grooves in the inner lin-
ing of the lid and the
outer lining of the con-
tainer must be similar.
A manufacturing unit
making covered con-
tainers must perform
a statistical experiment
to ensure quality check
of its products. Such an
experiment would rely
on the application of
the F distribution.

(iii.iii) Example: Inverse symmetry of the upper and lower tailed percentage points
of F(n, m)

Given that the upper 5-percentage point of F(5, 10) can be found by using the Mat-
lab command >> finv(1-0.05,5,10).18 Compute the lower 95-percentage point of
F(5, 10) both analytically as well as using an appropriate Matlab command.

Solution: Since the Matlab command >> finv(1-0.05,5,10) gives ans = 3.3258, and
the command >> finv(1-0.05,10,5) gives ans = 4.7351. We have f0.05,5,10 = 3.3258
and f0.05,10,5 = 4.7351 whence we must have f0.95,5,10 = 1

f0.05,10,5
= 1

4.7351 = 0.2112. In-
deed using the Matlab command >>finv(1-0.95,5,10), we get ans = 0.2112 which
means that we would observe the value greater than 0.2112 about 95% of the time by
chance (when the numerator degrees of freedom is 5 and the denominator degrees of
freedom is 10).
18 The convention used in the Matlab command >> finv(1-α,n,m) may seem antithetical to the corre-
sponding notation fα,n,m; so we warn the readers here to be mindful of this.
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6.5 Chapter project: Prioritizing post-disaster reconstruction measures

6.5.1 Interlude: Ratings of the field managers on bottlenecks in project implementation

The ratings of the field managers on the issues mentioned in the project prologue section
are printed below.

1. Community Participation:

Rating (scale: 1-10, 1: strongly disagree, 10: strongly agree)
Cities Mgr1 Mgr2 Mgr3 Mgr4 Mgr5 Mgr6
Port-au-Prince (Haiti) y11 =3 y12 =2 y13 =9 y14 =8 y15 =9 y16 =9
Tacloban City y21 =5 y22 =9 y23 =10 y24 =5 y25 =8 y26 =9
Latur y31 =6 y32 =7 y33 =10 y34 =5 y35 =7 y36 =8
New Orleans y41 =8 y42 =9 y43 =9 y44 =8 y45 =2 y46 =8
Kathmandu y51 =3 y52 =8 y53 =7 y54 =10 y55 =10 y56 =4
Bagh City y61 =2 y62 =7 y63 =9 y64 =10 y65 =6 y66 =7

2. Funding:

Rating (scale: 1-10, 1: strongly disagree, 10: strongly agree)
Cities Mgr1 Mgr2 Mgr3 Mgr4 Mgr5 Mgr6
Port-au-Prince (Haiti) y11 =3 y12 =2 y13 =9 y14 =8 y15 =9 y16 =7
Tacloban City y21 =5 y22 =4 y23 =4 y24 =5 y25 =3 y26 =2
Latur y31 =5 y32 =2 y33 =4 y34 =5 y35 =1 y36 =2
New Orleans y41 =3 y42 =1 y43 =1 y44 =2 y45 =6 y46 =2
Kathmandu y51 =3 y52 =8 y53 =7 y54 =10 y55 =10 y56 =4
Bagh City y61 =3 y62 =1 y63 =9 y64 =8 y65 =6 y66 =7

3. Land Ownership:

Rating (scale: 1-10, 1: strongly disagree, 10: strongly agree)
Cities Mgr1 Mgr2 Mgr3 Mgr4 Mgr5 Mgr6
Port-au-Prince (Haiti) y11 =9 y12 =9 y13 =10 y14 =8 y15 =7 y16 =8
Tacloban City y21 =5 y22 =4 y23 =4 y24 =5 y25 =3 y26 =2
Latur y31 =4 y32 =6 y33 =7 y34 =2 y35 =8 y36 =9
New Orleans y41 =3 y42 =1 y43 =5 y44 =2 y45 =6 y46 =2
Kathmandu y51 =7 y52 =4 y53 =5 y54 =1 y55 =2 y56 =3
Bagh City y61 =3 y62 =2 y63 =9 y64 =8 y65 =6 y66 =7

4. Shortage of technical staff:

Rating (scale: 1-10, 1: strongly disagree, 10: strongly agree)
Cities Mgr1 Mgr2 Mgr3 Mgr4 Mgr5 Mgr6
Port-au-Prince (Haiti) y11 =6 y12 =9 y13 =5 y14 =5 y15 =7 y16 =6
Tacloban City y21 =6 y22 =4 y23 =6 y24 =5 y25 =7 y26 =8
Latur y31 =4 y32 =6 y33 =7 y34 =2 y35 =8 y36 =9
New Orleans y41 =4 y42 =6 y43 =6 y44 =1 y45 =8 y46 =9
Kathmandu y51 =10 y52 =7 y53 =8 y54 =1 y55 =5 y56 =6
Bagh City y61 =3 y62 =2 y63 =9 y64 =8 y65 =6 y66 =7
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The data set above comprises of ratings of construction managers on issues plaguing
reconstruction projects post disaster (PDR). In each group (city), there are six different
observations from six construction engineers who have been involved in PDR projects
over the last many years. For each of the above mentioned issues, you have to perform
a one-way ANOVA calculation and test if the data provided in the tables presents a sta-
tistically significant difference in the mean rating of the construction engineers between
the six different cities. This will reveal if the issues plaguing the implementation of PDR
projects is affected in an identical manner across the six different cities around the world.
Once the issues that are universally relevant have been identified, then the total mean
rating score across all cities for a given issue should be computed and a decision on nec-
essary corrective measure should be taken if this grand mean is greater than 5 (on a scale
of 10).

The one-way ANOVA analysis is a specific statistical experiment where we test whether
there is a significant difference in means (µ) of different populations. In the next few sec-
tions of this chapter, we will study the fundamental principles of performing the test of
hypothesis that will aid us to complete the chapter project.

6.6 Test of hypothesis and statistical inference

The primary objective of performing a test of hypothesis is to use data from a sample (ran-
dom) to make inferences about the population. Such statistical experiments rely on the use
of test statistics and sampling distributions like the standard normal distribution, χ2 distri-
bution, t distribution, F distribution, etc.

Such a statistical experiment involves (i) a statement (hypothesis) about the parameter
(characterizing the concerned population), and (ii) a measure of reliability of that statement
in terms of probability.

6.6.1 What is a hypothesis?

It is a statement about a parameter(s) characterizing a population. A hypothesis usually
results from speculation concerning an observed behavior, a natural phenomenon, or an
established theory. If a hypothesis is stated in terms of population parameters such as the
mean and variance, then it is called a statistical hypothesis. Data from the sample is used to
test the validity of the hypothesis.

6.6.2 Components of an experiment to test hypothesis

The key components are itemized below.

• Construct the statement to be tested: null (H0) vs alternate (H1 or Ha) hypothesis.

• Identify the rejection (or critical) region to enable a decision about the hypothesis (eg. the
evidence based on the test statistic may prompt us to either reject or fail to reject the null
hypothesis).

• Quantify the likely error in the aforementioned decision in terms of a probability mea-
sure. There are generally two types of errors, viz., type-1 error (with a probability of occur-
rence denoted by α) and type-2 error (with a probability of occurrence denoted by β). The
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objective is to reduce these errors while making a decision. However, in many circum-
stances, reducing one type of error can lead to an increase in the other type of error.

6.6.3 Steps involved in performing a test of hypothesis

The steps involved in performing a test of hypothesis are listed below.

1. Step 1: Specify H0 and Ha and an acceptable level of significance α.

2. Step 2: Define a sample based test statistic (eg. X, S2, etc.) and a rejection (or critical)
region for H0 that is most suitable for the experiment.

3. Step 3: Collect the sample data and calculate the test statistic.

4. Step 4: Make a decision to either reject or fail to reject H0.

5. Step 5: Interpret the result in the language of the problem at hand (eg., provide confi-
dence intervals, etc.) and provide an estimate of the error in the decision.

6.6.4 Errors in inference

The type and measure of the error is captured succinctly in the following table.

Decision \Truth condition H0 is true H0 is not true

H0 is not rejected Decision is correct type-2 error
(with probability 1− α) (with probability β)

H0 is rejected type-1 error Decision is correct
(with probability α) (with probability 1− β)

6.6.5 What might determine our choice of α?

Deciding on the level of significance of a test is as much an art as it is guided by the context
of the problem. This may be best illustrated through an example which we study in this
section.

Figure 6.18: A sample
of sixteen peanut jars
from a packaging unit
is subjected to statistical
tests to check for dis-
crepancies in weights.

Example: Quality control in a packaging industry

A company that packages salted peanuts in 8 kg jars is interested in maintaining con-
trol on the amount of peanuts put in the jars by one of the machines in its packaging
units. Control is defined as averaging 8 kg per jar and not consistently over or under
filling the jars. To monitor this control, a sample of 16 jars is taken from the packaging
line at random time intervals and their contents weighed. The mean weight of peanuts
in these 16 jars will be used to test the null hypothesis that the machine is indeed
working properly. If it is found not to be doing so, an expensive adjustment will be
required. What may be a suitable level of significance for this test? For convenience,
let us suppose the population standard deviation σ = 0.2 kg of the weight of the jars
is known to us.19

Solution:
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1. Step 1: The hypothesis is stated as follows.

H0 : µ = 8 (6.7)

Ha : µ 6= 8 (6.8)

In many problems, we may want to decide on α at this point. But what if we are
not sure about how to choose α? This example will attempt to address this issue.

2. Steps 2 & 3: The most appropriate test statistic for the case in hand is the sample

mean, X = ∑16
i=1 Xi
16 .

3. Step 4: A suitable rejection criteria may be selected as X < 7.9 or X > 8.1.

4. Step 5: The identification of the rejection criteria must aid us in assigning the level
of significance of the test α.20 This may be estimated as follows.

α = Prob
(

X < 7.9 or X > 8.1 when µ = 8
)

. (6.9)

P(X < 7.9) = P(
X− µ

σ/
√

n
<

7.9− 8
0.2/
√

16
) (6.10)

= P(Z < −2.0) (6.11)

= 0.0228. (6.12)

Likewise, P(X > 8.1) = P(Z > 2.0) = 0.0228. Since the events X < 7.9 and X > 8.1
are disjoint; we have

α = Prob(type-1 error) = P(X < 7.9) + P(X > 8.1) = 0.0228 + 0.0228 = 0.0456.

19 In most practical cases, σ will not be known and we may have to base our analysis on the t distribution as
opposed to the standard normal distribution that is used in this problem.
20 We may also interpret α as the maximum allowable type-1 error.

6.6.6 Additional comments on the level of significance α

1. Notwithstanding the insight that may be gleaned from the previous example, we may not
have a clear idea of what an appropriate maximum allowable type-1 error should be for a
typical statistical experiment. There is no general rule of thumb to choose α.

2. α may also be sensitive to minor changes in the sample statistic and may conflate matters
in appropriately testing the veracity of the hypothesis.

3. There is always a trade-off between α and β21 because any efforts to reduce one may 21 β is the probability of
making type-2 error. We
will not discuss much about
β in this introductory text.
Interested readers may refer
to more advanced texts listed
in the bibliography.

likely increase the other.

6.6.7 Two sample test for means

In this section, we will discuss another test of hypothesis which uses the t distribution.
Consider a case where we have two different populations that are normally distributed

with the same variance. A random variable sampled from each population is denoted by



84 practical introduction to probability and statistics

X1 ∼ N(µ1, σ2) and X2 ∼ N(µ2, σ2). Further, let there be n1 samples taken from the first
population: X1i ∼ N(µ1, σ2); i = 1, 2, 3, ..., n1 and let there be n2 samples taken from the
second population: X2j ∼ N(µ2, σ2); j = 1, 2, 3, ..., n2.

1. Step 1: Construct the hypothesis.

H0 : µ1 = µ2

H1 : µ1 6= µ2 (double sided test)

(alternatively, µ1 > µ2 or µ1 < µ2) (single sided test)

Further, choose and set α.

2. Steps 2 & 3: The test statistic is t := (X1−X2)−(µ1−µ2)

S
√

1
n1

+ 1
n2

where S2 =
(n1−1)S2

1+(n2−1)S2
2

n1+n2−2 and

S2
j is the sample variance corresponding to the samples taken from the jth population set.

Here j = 1, 2.

3. Step 4: Identify a rejection criteria.22 There may be three distinct cases depending on the 22 In the parlance of statistics,
one never accepts a null
hypothesis. One either
rejects or fails to reject the
null hypothesis against an
alternate hypothesis.

type of test (double or single sided alternate hypotheses).

• Reject H0 in favor of H1 (µ1 6= µ2) if

|t| ≥ t(α/2, n1 + n2 − 2).

• Reject H0 in favor of H1 (µ1 > µ2) if

t ≥ t(α, n1 + n2 − 2).

• Reject H0 in favor of H1 (µ1 < µ2) if

t ≤ −t(α, n1 + n2 − 2).

The right hand side term refers to the t observable value from the t distribution with a
given significance level (α/2 or α as stated above) and (n1 + n2 − 2) degrees of freedom.

Figure 6.19: My vintage
car Rocky-X3 is likely
to derive better mileage
when powered by gaso-
line brand Gusto.

6.6.8 Example: Choosing between two gasoline brands for optimal mileage and per-
formance

While comparing two different gasoline brands, a consumer survey reveals the follow-
ing:

• a full tank of brand Gusto requires 4 cans and covers 546 km with a standard devi-
ation of 31 km,

• a full tank of brand Jiva requires 4 cans and covers 492 km with a standard devia-
tion of 26 km.

Assume that the performance parameters (mentioned above) of both brands are sam-
pled from Normal distributions with equal variances; test if there is a significantly
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better value in terms of mileage offered by Gusto over Jiva or if the mileage of both
brands are statistically similar. Choose α = 0.05.

Solution: Let us define the hypothesis at the outset as follows. We will use the sub-
script 1 for the brand Gusto and the subscript 2 for the brand Jiva.

H0 : µ1 = µ2

H1 : µ1 > µ2

For samples from brand Gusto, we have: X1 = 546, S1 = 31, n1 = 4.
For samples from brand Jiva, we have: X2 = 492, S2 = 26, n2 = 4.

The sample variance S2 = (4−1)312+(4−1)262

4+4−2 =⇒ S = 28.609. Therefore,

t (under H0) =
546− 492

28.609
√

1/4 + 1/4
= 2.67.

The observable value t(0.05, 6) = 1.9432 may be computed either from the t distribu-
tion look-up table or using Matlab >>tinv(1-0.05,6) where (n1 + n2 − 2) = (4 + 4−
2) = 6. Since this is a single tailed test

H1 : µ1 > µ2,

and because
tcalculated = 2.67 > t(0.05, 6) = 1.9432;

we reject H0 in favor of H1. In other words, brand Gusto will likely give us better
mileage than brand Jiva at the level of significance α = 0.05 (or with 95% confidence
level).

6.6.9 Analysis of variance (ANOVA)

It must be emphasized that the t statistic based test for two means cannot be generalized for
more than two different population sets. For multi-population tests, we may have to resort
to analysis of variance (ANOVA). In order to appreciate the machinery of ANOVA, it is crucial
to understand some notations and conventions. We will start here with a note on the data
representation.

One-way ANOVA

Data collated from survey samples is denoted by yij where the first subscript represents
the ith population groups (i = 1, 2, ..., t) and the second subscript represents the jth ob-
servation (data point; j = 1, 2, ..., n). We will consider n1, n2, ..., nt observations for the t
population groups. If n1 = n2 = ... = nt = n, then we have a balanced data set. The total
number of observations is ∑t

i=1 ni (= nt in the case of balanced data).

Null hypothesis:
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H0 : µ1 = µ2 = · · · = µt

H1 : one of the above equality is not satisfied. (6.13)

Assumption: Data from each population group is normally distributed N(µi, σ2) where σ2 is
the same across population groups.

Organization of data:

Population group observations/data ∑j yij (totals) Yi.
ni

(means) sum of squares

1 y11 y12 · · · y1n1 Y1. y1. SS1

2 y21 y22 · · · y2n2 Y2. y2. SS2

3 y31 y32 · · · y3n3 Y3. y3. SS3

· · · · ·
· · · · ·
· · · · ·
t yt1 yt2 · · · ytnt Yt. yt. SSt

Overall Y.. y.. SSp

We have used the convention whereby the position of the . (dot) in the subscript represents
which of the two indices (in the subscript) are being summed. Eg., for some variable αij, we
will use the following convention for summation: ∑i = αij = α.j where the summation is
performed over the first index i.

Sum of squares: SSi = ∑j(yij − yi.)
2 ≡ ∑j y2

ij −
Y2

i.
ni

.

Pooled sum of squares: SSp = ∑t
i=1 SSi.

Pooled degrees of freedom: ∑t
i=1 ni − t = t(n− 1).23 23 The last equality is true for

balanced data.
The pooled variance s2

p can now be defined as s2
p =

SSp

∑t
i=1 ni−t

. Now another estimate of

the sample variance is possible by considering the mean data across the population groups

(factor levels). This sample variance estimate is formulated as follows: s2
means = ∑i(yi.−y..)

2

t−1 .
Under the null hypothesis and based on the discussions under the first paragraph of the
section on sampling distributions, we may deduce that the factor level means have a distri-
bution with mean µ and variance σ2

n . Thus we have an estimate for the population variance
σ2 = ns2

means with (t − 1) degrees of freedom. Of course, an alternate estimate of the pop-
ulation variance is s2

p with t(n− 1) degrees of freedom. We know from the definition of the
F statistic that the F value represents the ratio of two independent estimates of a common
variance. Therefore,

Fcal =
ns2

means
s2

p
. (6.14)

If Fcal > Fα(t− 1, (n− 1)t), then we reject H0.

Alternate formulation of one-way ANOVA
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This alternate formulation leads to the same inference. In this formulation, we have the
following definitions.

SSB (sum of sqs. between groups) = ∑
i

(Yi.)
2

ni
− Y2

..

∑i ni
with (t− 1) degrees of freedom.

(6.15)

SSW (sum of sqs. within groups) = ∑
j

∑
i

y2
ij −∑

i

Y2
i.

ni
with (∑

i
ni − t) degrees of freedom.

(6.16)
Consequently, the total sum of squares is TSS = SSB + SSW. The one-way ANOVA table
can now be re-formulated thusly.

Source d.o.f.† SS† MS† = SS
d.o. f . Fcal

between groups t− 1 SSB MSB MSB
MSW

within groups (∑i ni − t) SSW MSW
total ∑i ni − 1 TSS

† d.o.f. means degrees of freedom, SS means sum of squares, MS means mean sum of squares.

Inference: If Fcal > Fα(t− 1, (n− 1)t), then we reject H0 in favor of H1.
Figure 6.20: Rice planta-
tion in multiple plots of
land to test the produc-
tivity across different
rice varieties.

6.6.10 Example: Rice yield across varieties

An experiment to compare the yield of four varieties of rice is conducted. Each of the
plots on a test farm where soil fertility is fairly homogeneous is treated alike relative
to water and fertilizer. Four plots are randomly assigned each of the four varieties of
rice. The yield in kg/acre is recorded for each plot for this randomized experiment.
Does the data presented in the following table indicate a difference in the mean yield
between the four varieties? Choose α = 0.01.

variety yield

1 934 1041 1028 935
2 880 963 924 946
3 987 951 976 840
4 992 1143 1140 1191

Solution:

The hypothesis is stated as follows.

H0 : µ1 = µ2 = µ3 = µ4

H1 : not all varieties have the same mean.

Here µi denotes the mean yield of the ith variety. n = 4, t = 4. The one-way ANOVA
table is printed below.
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Rice variety yield data Yi. (totals) yi. (means) SSi

1 934 1041 1028 935 3938 984.50 10085

2 880 963 924 946 3713 928.25 3868.75
3 987 951 976 840 3754 938.50 13617
4 992 1143 1140 1191 4466 1116.5 22305

overall 15871 991.94 49875.75

ns2
means = n ∑i(yi.−y..)

2

t−1 = 29977.06. Further, s2
p = ∑i SSi

t(n−1) = 4156.31.

Fcal =
29977.06
4156.31

= 7.21.

Using the F distribution table or using Matlab, we can find F0.01(3, 12) = 5.95. Since
Fcal > F0.01(3, 12), we reject H0 and infer that there is significant difference in yield be-
tween the different rice yield.

We would arrive at the same conclusion if we had used the alternate approach to
perform the calculation. In the alternate approach, the one-way ANOVA table is as
follows.

Source d.o.f. SS MS = SS
d.o. f . Fcal

between varieties 3 89931.19 29977.06 MSB
MSW = 7.21

within varieties 12 49875.75 4156.31
total 15 139806.94

6.6.11 Advanced ANOVA techniques

An extension of the one way ANOVA is a two way ANOVA technique where we may con-
sider the influence of two independent factors (eg., we may want to test the influence of
rice variety and temperature of the environment in our aforementioned experimental ex-
ample) on the dependent observable or outcome (eg., yield of the rice). In such a scenario,
certain combinations of the two factors may interact differently from a simple additive ap-
proach. This interaction phenomena must necessarily be captured in the analysis. There may
be problems where more than two factors may be involved, and we may have to consider
what is known as a 2k factorial experimental design. We will not elaborate on these multi-factor
ANOVA designs here. However, an illustrative exercise problem is included at the end of the
chapter for the interested audience to learn this technique.

6.7 Chapter project: Prioritizing post-disaster reconstruction measures

6.7.1 Epilogue: Identifying issues that are universally plaguing reconstruction efforts by per-
forming ANOVA on the survey ratings of the managers

Now that we know the basic principles involved in performing ANOVA, let us use the
survey ratings of the managers to populate the following ANOVA table.



statistical experiments 89

source degree of freedom sum of sqs. mean of sqs. Fcal

between groups d f B = t− 1 SSB MSB Fcal =
MSB
MSW

within groups d f W = ∑i ni − t SSW MSW
total ∑i ni − 1 = n− 1 TSS = SSB+SSW

Here number of groups = t = 6 and number of observations in group i = ni = 6 and
n = 36.

Software Implementation

Use matlab to construct the one-way ANOVA table and implement the follow-
ing algorithm.

⇒ Compute the entries of the ANOVA table. One-way ANOVA computation
involves the following calculations:

1. Compute Yi. = ∑ni
j=1 yij, Y.. = ∑i,j yij.

2. Compute SSB = ∑i
Y2

i.
ni
− Y2

..
∑i ni

, SSW = ∑i,j y2
ij −∑i

Y2
i.

ni
, TSS = SSB + SSW.

3. Set MSB = SSB
t−1 and MSW = SSW

∑i n1−t .

4. Compute Fcal =
MSB
MSW .

⇒ Next, compare Fcal and Ftab = Fα(d f B, d f W)

(Ftab is found from F−distribution table).

⇒ If Ftab > Fcal , then fail to reject H0 (i.e. possibly all means (mean rating val-
ues) are statistically equal); else if Ftab < Fcal , then reject H0 (and abandon
dwelling on the issue for the time being).

⇒ If Ftab > Fcal and if µ =
∑i,j yij

n > 5.0, then the issue is universally relevant
across cities and demands corrective measures to successfully implement
PDR projects.

Questions

1. State the assumptions of one-way ANOVA. Comment if these assumptions seem rea-
sonable in the context of the PDR data provided here.

2. Implement the algorithm prescribed above in Matlab. Specifically, write a matlab
script to construct and display the ANOVA table for each of the dataset provided in the
interlude section 6.5.1 of the project.

3. Compute Ftab for the given problem from the F− distribution table corresponding to a
level of significance of test α = 0.01.

4. Based on the strategy prescribed in the algorithm, select and mention the issues that
are universally relevant across different cities and that need immediate redressal.
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5. Mention at least two drawbacks of one-way ANOVA test.
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6.9 Exercise problems

1. (Service time of a cashier in a shopping mall: application of CLT) A cashier in a shop-
ping mall serves customers standing in the queue one by one. Suppose that the service
time Xi for the ith customer has a mean E(Xi) = 2 min and Var(Xi) = 1 min. {Xi} for all i
customers are independent random variables. Let W be the total time spent by the cashier
to serve fifty customers. Find P(80 < W < 120).

Figure 6.21: Its a long
queue!

2. (Testing efficacy of student’s health and welfare programs in schools) A middle school
conducted a survey of its students to collect health information for future planning pur-
poses. The survey revealed that a substantial proportion of students were not engaging in
regular exercise, many did not have access to optimal nutrition and a substantial number
were exposed to environmental hazards like pollution. In response to a question on regu-
lar exercise, 60% of all parents of the students reported that their children were not regu-
larly exercising, 25% reported their wards were exercising sporadically and 15% reported
that their children were exercising regularly. The next year the school launched a health
promotion campaign on campus in an attempt to increase health behaviors among stu-
dents. The program included modules on exercise, nutrition, and environmental aware-
ness. To evaluate the impact of the program, the school again surveyed students and their
parents. The survey was completed by 470 students and the following data were collected
on the exercise question:

no exercise sporadic exercise regular exercise total
number of students 255 125 90 470

Based on the data, is there evidence of a shift in the distribution of responses to the ex-
ercise question following the implementation of the health promotion campaign on cam-
pus? In order to answer this question, design a suitable statistical experiment and frame a
hypothesis. Consider a 5% level of significance for testing your hypothesis.
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3. (Testing level of bacterial contamination in shipped packages) Matlab provides an in-
built database called hogg that is sourced from the work of Hogg and Ledolter.24 This 24 Engineering Statistics by

R. V. Hogg, and J. Ledolter,
Macmillan USA, (1987).

dataset has a record of total bacteria count in randomly selected cartons of milk packed
in different shipping boxes. The relevant data may be obtained by typing the following
commands in the Matlab command window.

>> load hogg

>> hogg

hogg =

24 14 11 7 19

15 7 9 7 24

21 12 7 4 19

27 17 13 7 15

33 14 12 12 10

23 16 18 18 20

Here the columns represent the randomly selected shipping boxes and the rows constitute
the bacterial count in randomly picked milk cartons from the respective shipping box.
Perform a one-way ANOVA to test if the bacterial contamination is the same, on an aver-
age, across the five different shipping boxes. Use the level of significance of test α = 0.01.
Compare your analysis with the Matlab inbuilt anova1 function that outputs the one-way
ANOVA table and the p-value of the test.25 25 You may use the follow-

ing Matlab commands:
>>[p,tbl,stats] =

anova1(hogg); and
>>doc anova1 to learn about
testing the validity of the null
hypothesis from the p-value
of the ANOVA experiment.

Figure 6.22: Watch out
for the extra dose of
caffeine in your drink!

4. (Consistency of caffeine content in coke across beverage counters) Coke is available as
a fountain soft drink from different vendors and beverage counters across the world. In
order to attain, consistency in quality, it is desired that the caffeine content in mg per
12 oz does not exceed 34 mg. The data collected from fifty randomly selected beverage
counters from across the world is available in a consolidated manner through this link
here: coke.csv. Perform a suitable test of hypothesis to validate the null hypothesis (mean
caffeine content across counters is 34 mg per 12 oz) against the alternate hypothesis that
the mean caffeine content is greater than 34 mg per 12 oz. In this context, answer the
following questions.

(a) Clearly state the null and the alternate hypothesis in mathematical terms.

(b) Identify the appropriate statistical test for this experiment.

(c) Verify the assumptions for using this aforementioned test is met.26

26 You may want to use the
Matlab inbuilt function
kstest to check one of these
assumptions.

(d) Calculate the sampling distribution of mean under the null hypothesis.

(e) Conduct the test of hypothesis and report your inference at α = 0.05 significance level.

5. (Prognosis of pulmonary infection) The change in the amount of carbon monoxide trans-
fer, that is an indicator of improved pulmonary function in smokers with chickenpox,
over a one week time frame, is recorded as follows: 33, 2, 24, 17, 4, 1, − 6 (units are
in ml). Is there an evidence of significant improvement in pulmonary function at a 95%
confidence level,

(a) if the data are normally distributed with variance σ2 = 100,

https://235d9ee8-8e8c-4d7b-a842-264ad94cf102.filesusr.com/ugd/334434_ec1803a64247404cbd782d1c8edac517.csv?dn=Coke-1.csv
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(b) if the data are normally distributed with unknown variance σ2?

You may use α = 0.05.

6. (Efficacy of calcium channel blockers among hypertensive patients of age group 45-59)
The efficacy of a treatment for hypertension is to be studied using a randomized clinical
trial. Thirty-eight hypertensive patients in the age group 45-59 were randomly allocated
to either a placebo group (who were administered over the counter potassium tablets)
or an intervention group (who were administered a calcium channel blocker) and a two-
month follow-up study was performed at the clinic. At the end of the trial phase, the dif-
ference in systolic blood pressure was measured for patients in each group and recorded.
A summary of the results is given below.

group number of patient participants mean difference in systolic blood pressure sample variance
placebo 21 −0.108 2.1012

intervention 17 3.753 4.6302

Is there any evidence of significant improvement in the treatment group? Use α = 0.01.

7. (How long will you keep your first car?) An economist wishes to investigate whether
people are keeping cars longer now than in the past. He knows that five years ago, 38% of
all passenger vehicles in operation were at least ten years old. He commissions a study in
which 325 automobiles are randomly sampled. Of them, 132 are ten years old or older.

(a) Find the sample proportion.

(b) Find the probability that, when a sample of size 325 is drawn from a population in
which the true proportion is 0.38, the sample proportion will be as large as the value
you computed in part (a). You may assume that the normal distribution applies.

(c) Give an interpretation of the result in part (b). Is there strong evidence that people are
keeping their cars longer than was the case five years ago?

8. (Cholesterol content in eggs) Suppose the mean amount of cholesterol in eggs labeled
“large” is 186 milligrams, with standard deviation 7 milligrams. Find the probability that
the mean amount of cholesterol in a sample of 144 eggs will be within 2 milligrams of the
population mean.

Figure 6.23: Estimating
cholesterol in eggs us-
ing a sampling distribu-
tion.

9. (Simulating Cochran’s theorem) Write a Matlab code to simulate and establish the ve-
racity of the following theorem, if Z1, ..., Zk are independent and identically distributed (i.i.d.)
standard normal random variables, then ∑k

i=1(Zi − Z)2 ∼ χ2
k−1; where Z is the sample mean.

10. (Two-way ANOVA) Aircraft primer paints are applied to aluminium surfaces by two
methods: dipping and spraying. The purpose of using the primer is to improve paint adhe-
sion, and some parts can be primed using either method. The process engineering group
responsible for this operation is interested whether three different primers differ in their
adhesion properties. A factorial experiment was performed to investigate the effect of
paint primer type and application method on paint adhesion. For each combination of
primer type and application method, three specimens were painted, then a finish paint
was applied, and the adhesion force was measured. The data from the experiment are
shown in the table below. Perform a two-way ANOVA and identify the most effective
primer type and the better of the two paint application method.
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primer type dipping yij. spraying yij. yi..

1 4.0, 4.5, 4.3 12.8 5.4, 4.9, 5.6 15.9 28.7
2 5.6, 4.9, 5.4 15.9 5.8, 6.1, 6.3 18.2 34.1
3 3.8, 3.7, 4.0 11.5 5.5, 5.0, 5.0 15.5 27.0

y.j. 40.2 49.6 y... = 89.8
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