Eigenvalues and Eigenvectors

Definition:

Let $A \in M_{n \times n}(\mathbb{F})$ where \mathbb{F} may be \mathbb{R} or \mathbb{C}

 \vec{x} is an **Eigenvector** (EV) of A if $A\vec{x} = \lambda \vec{x}$,

where λ is a constant (either \mathbb{R} or \mathbb{C})

and $\vec{x} \in \mathbb{F}^n, \vec{x} \neq \vec{0}$

 λ is an **Eigenvalue** (ev) of A associated with the Eigenvector (EV) \vec{x}

The equation $A\vec{x} = \lambda \vec{x}$ can be interpreted both algebraically and geometrically

Algebraic Meaning of $A\vec{x} = \lambda \vec{x}$

Note that
$$A\vec{x} = \lambda \vec{x} \implies (A - \lambda I)\vec{x} = \vec{0}$$

The (**Eigenvectors** $\{\vec{x}\} + \vec{0}$) form the **Null Space** of the matrix $(A - \lambda I)$ where it should be noted that $\vec{0}$ was explicitly left out from the definition of the eigenvectors.

This subspace of $(A - \lambda I)$ has a special name – **Eigenspace** or **Characteristic Space** of **A associated with** λ

Example:
$$A = \begin{pmatrix} 2 & -1 \\ 2 & 4 \end{pmatrix}$$
 $(A - \lambda I) = \begin{pmatrix} 2 - \lambda & -1 \\ 2 & 4 - \lambda \end{pmatrix}$

Solving $A\vec{x} = \lambda \vec{x}$ is equivalent to solving the system of linear equations -

$${2 - \lambda \choose 2} {-1 \choose x_2} {x_1 \choose x_2} = {0 \choose 0} \text{ or } {(2 - \lambda)x_1 - x_2 = 0 \choose 2x_1 + (4 - \lambda)x_2 = 0}$$

Since an eigenvector cannot be $\vec{0}$, this system of linear equations can have a non-trivial solution only if $Ker(A - \lambda I) \neq \{\vec{0}\}$

But this is true only if $(A - \lambda I)$ is non-invertible, which can only happen if –

$$det(A - \lambda I) = |A - \lambda I| = 0 \Rightarrow (2 - \lambda)(4 - \lambda) - (-1)(2) = 0$$

Solving this equation, we get Eigenvalues $\lambda_1 = 3 + i$, $\lambda_2 = 3 - i$

The eigenvectors for each eigenvalue are found by solving -

$$(A - \lambda_1 I) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ and } (A - \lambda_2 I) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Eigenvector for
$$\lambda_1 = 3 + i$$
: $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = K \begin{pmatrix} \frac{(-1+i)}{2} \\ 1 \end{pmatrix}$

Eigenvector for
$$\lambda_2 = 3 - i$$
: $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = K \begin{pmatrix} \frac{(-1-i)}{2} \\ 1 \end{pmatrix}$

The Eigenspace is formed by these two vectors along with the zero vector $\vec{0}$

Features of an Invertible Matrix $B \in M_{n \times n}$

1. *B* is invertible

2. $B\vec{x} = \vec{b}$ has a unique solution $\vec{x} \ \forall \ \vec{b} \in \mathbb{R}^n$

$$3. rref(B) = \mathbb{I}_n$$

$$4. rank(B) = n$$

$$5. im(B) = \mathbb{R}^n$$

$$6. Ker(B) = \{ \vec{0} \}$$

All these statements are equivalent

A slight digression –

Question: Why $null(B) = \{0\} \iff B$ is invertible

Answer: The transformation $T: U \rightarrow V$ is invertible if and only if T is *one to one* & *onto*

This implies that - dim(U) = dim(V)

Rank Nullity Theorem
$$\Rightarrow$$
 $null(T) + rank(T) = dim(U)$
 $\{0\}$ $dim(V)$

Something Interesting and Useful!

- The trace of a matrix (product of its diagonal terms) is equal to the product of its eigenvalues
- The sum of the eigenvalues of a matrix is equal to the determinant of the matrix

Example

What are the eigenvalues and eigenvectors of the $n \times n$ identity matrix \mathbb{I}_n ?

Is there an eigenbasis for \mathbb{I}_n ?

Which matrix would diagonalize \mathbb{I}_n ?

Exercise Problem Consider
$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$

Ans:
$$\lambda^3 - 4\lambda^2 + \lambda + 6$$

Ans:
$$\begin{pmatrix} 1\\1\\2 \end{pmatrix}$$
, $\begin{pmatrix} 1\\1\\-1 \end{pmatrix}$, $\begin{pmatrix} 1\\-1\\0 \end{pmatrix}$

$$(A - \lambda I) = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 1 \end{pmatrix} \quad rref = \begin{pmatrix} 1 & 0 & -0.5 \\ 0 & 1 & -0.5 \\ 0 & 0 & 0 \end{pmatrix}$$

Geometric Meaning of $A\vec{x} = \lambda \vec{x}$, when λ is real

As indicated earlier, when λ is real, $A\vec{x}$ is parallel to \vec{x} .

This implies that a Eigenvector \vec{x} , either gets stretched or compressed along its length when acted upon by the transformation matrix A

Algebraic Multiplicity & Geometric Multiplicity

Algebraic Multiplicity: Let A be a $N \times N$ matrix and let $\lambda_1, \dots, \lambda_N$ be the *possibly repeated* eigenvalues of A which solve the characteristic equation

$$det(A - \lambda I) = 0 = (\lambda - \lambda_1) \cdot \cdots \cdot (\lambda - \lambda_N)$$

The eigenvalue λ_n has algebraic multiplicity $\mu(\lambda_n)$ if the characteristic equation has exactly $\mu(\lambda_n)$ solutions equal to λ_n

Geometric Multiplicity: Let A be a $N \times N$ matrix and let λ_n be one of the eigenvalues and denote its associated eigenspace by E_n .

The dimension of E_n is referred to as the geometric multiplicity of the eigenvalue λ_n

The Geometric Multiplicity of an eigenvalue is LESS THAN OR EQUAL to its Algebraic Multiplicity also, Geometric Multiplicity of eigenvalue $\lambda = \text{nullity}(A - \lambda I) = N - \text{rank}(A - \lambda I)$

Algebraic Multiplicity & Geometric Multiplicity EXAMPLE

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$$

Eigenvalues are $\lambda = -1$, $\lambda = 2$

Eigenvector for λ =-1 is $\binom{-1}{1}$

Eigenvector for $\lambda=2$ is $\binom{2}{1}$

Algebraic Multiplicity is 1 for both the eigenvalues

Geometric Multiplicity is 1 for both the eigenvalues as each of the eigenspaces E_{-1} and E_2 is spanned by only one non-zero vector

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

Eigenvalues are $\lambda = 1$, **TWICE**

Eigenvector for $\lambda=1$ is $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Algebraic Multiplicity is 2 for the single eigenvalue

Geometric Multiplicity is 1 for this eigenvalue

 $(A - \lambda I) = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$ The rank of this matrix is 1.

By the rank-nullity theorem, we get that the nullspace has dimension 1. Hence, the Geometric Multiplicity is 1.

Note that in this case, Geometric Multiplicity \neq Algebraic Multiplicity.

In the general case, Geometric Multiplicity has to be less than or equal to the Algebraic Multiplicity

IMPORTANT: If for every eigenvalue of **A**, the geometric and algebraic multiplicities are equal then the matrix **A** will be **Diagonizable**

Algebraic Multiplicity & Geometric Multiplicity EXAMPLE

$$A = \begin{pmatrix} 2 & 2 & 2 \\ 0 & 2 & 0 \\ 0 & 1 & 3 \end{pmatrix}$$

Eigenvalues are $\lambda = 3$ (Algebraic Multiplicity 1)

 $\lambda = 2$ (Algebraic Multiplicity 2)

$$\lambda = 3$$
 $(A - 3I) = \begin{pmatrix} -1 & 2 & 2 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ rank = 2 nullity = 1 Eigenvector = $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ Geometric Multiplicity = 1

$$\lambda = 2 \quad (A - 2I) = \begin{pmatrix} 0 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \text{ rank} = 1 \quad \text{nullity} = 2 \quad \text{Eigenvectors} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

Geometric Multiplicity = 2

Since **Geometric Multiplicity = Algebraic Multiplicity** for each of the two roots, the matrix A will be Diagonalizable

To Diagonalize **A** to the Diagonal Matrix **D**, use the matrix S, so that $A=SDS^{-1}$ and, therefore, $D=S^{-1}AS$.

This is discussed subsequently. For this example, we have -

$$S = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 1 \end{pmatrix} \leftarrow S^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & -2 & -2 \\ 0 & -1 & 0 \end{pmatrix}$$
Eigenvectors as the columns
$$D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \leftarrow \text{Eigenvalues on}$$
Eigenvalues on

the diagonal

Certain forms of matrices are convenient to work with. For example –

Upper Triangular Form (also for the Lower Triangular Form)

- * sum of two upper triangular matrices also upper triangular
- * product of two upper triangular matrices also upper triangular
- * inverse remains upper triangular
- * transpose is lower triangular
- * stays upper triangular if multiplied by a scalar
- * determinant is the product of the diagonal elements

Diagonal Form

- * determinant is the product of the diagonal elements
- * inverse of a diagonal matrix is also diagonal with each term being the inverse of the original term
- * transpose of the matrix is the same matrix
- * multiplication of two diagonal matrices is commutative, i.e. PQ = QP
- * powers of the matrix are easily computed
- * eigenvalues of the matrix are just the diagonal terms of the matrix

Diagonalizable Matrices

$$\begin{array}{ccc}
A & \rightarrow & D \\
any & n \times n \\
matrix
\end{array}$$
n x n matrix in diagonal form

 $A \in M_{n \times n}(\mathbb{F})$ is diagonizable over \mathbb{F} if there exists an invertible matrix S over \mathbb{F} such that -

$$A = SDS^{-1}$$

or equivalently,

$$D = S^{-1}AS$$

Similarity Transformation

Here, S is said to diagonalize A

Note that, A and D have the same eigenvalues which are actually the diagonal terms of D

When is a matrix diagonalizable?

A matrix $A \in M_{n \times n}(\mathbb{F})$ is diagonalizable if and only if A has n linearly independent eigenvectors in \mathbb{F}^n

A $n \times n$ complex matrix that has n distinct eigenvalues is always diagonizable (n distinct eigenvalues $\Longrightarrow n$ linearly independent eigenvectors)

To find a matrix S which diagonalizes A, find a set of linearly independent eigenvectors of A.

If there are enough of them, they can be taken to form the columns of the $m{S}$ matrix.

Solve $|A - \lambda I| = 0$ to obtain $\lambda_{1,2} = 3 \pm i$ as the eigenvalues of A.

We then use $A\vec{x}_i = \lambda_i \vec{x}_i$, j=1, 2 to obtain the following eigenvectors

$$\vec{x}_1 = \begin{pmatrix} \frac{-1+i}{2} \\ 1 \end{pmatrix}, \vec{x}_2 = \begin{pmatrix} \frac{-1-i}{2} \\ 1 \end{pmatrix}$$
 for $A \leftarrow$

The column vectors of **S** form an eigenbasis for A

Then
$$S = \begin{pmatrix} \frac{-1+i}{2} & \frac{-1-i}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
 will diagonalize A

$$A = \begin{pmatrix} 2 & -1 \\ 2 & 4 \end{pmatrix}$$
 $\lambda_{1,2} = 3 \pm i$ $\vec{x}_1 = \begin{pmatrix} \frac{-1+i}{2} \\ 1 \end{pmatrix}, \vec{x}_2 = \begin{pmatrix} \frac{-1-i}{2} \\ 1 \end{pmatrix}$

$$S^{-1}AS = \begin{pmatrix} -i & \frac{1-i}{2} \\ +i & \frac{1+i}{2} \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} \frac{-1+i}{2} & \frac{-1-i}{2} \\ 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 3+i & 0 \\ 0 & 3-i \end{pmatrix}$$

$$= D$$
Note that the diagonal terms of D are the eigenvalues of A

$$A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$$

Characteristic Equation: $(1 - \lambda)^2 - 4 = 0$ Eigenvalues are $\lambda_1 = 3$, $\lambda_2 = -1$

For
$$\lambda_1 = 3$$
 $(A - 3I)\overrightarrow{x_1} = \begin{pmatrix} -2 & 1 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} x_{11} \\ x_{12} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $rref \begin{pmatrix} 1 & -1/2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\overrightarrow{x_1} = k \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

$$\operatorname{For} \lambda_2 = -1 \quad (A+I) \overrightarrow{x_2} = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} x_{21} \\ x_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \operatorname{rref} \begin{pmatrix} 1 & 1/2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \overrightarrow{x_2} = k \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$D = S^{-1}AS$$

$$S = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \quad S^{-1} = \begin{pmatrix} 1/2 & 1/4 \\ 1/2 & -1/4 \end{pmatrix} \quad D = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

Example $A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \end{pmatrix}$ Eigenvalues: $\lambda_1 = 2, \lambda_2 = 1, \lambda_3 = -1$

$$\lambda_1 = 2, \quad \begin{pmatrix} -1 & 1 & 2 \\ -1 & 0 & 1 \\ 0 & 1 & -3 \end{pmatrix} \begin{pmatrix} x_{11} \\ x_{12} \\ x_{13} \end{pmatrix} = \vec{0} \qquad rref \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \overrightarrow{v_2} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$$

$$rref\begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \overrightarrow{v_2} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$$

$$\lambda_2 = 1, \quad \begin{pmatrix} 0 & 1 & -2 \\ -1 & 1 & 1 \\ 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} \chi_{21} \\ \chi_{22} \\ \chi_{23} \end{pmatrix} = \vec{0} \qquad rref \begin{pmatrix} 1 & 0 & -3 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \overrightarrow{v_1} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$rref\begin{pmatrix} 1 & 0 & -3 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \overrightarrow{v_1} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$\lambda_{3} = -1, \ \begin{pmatrix} 2 & 1 & -2 \\ -1 & 3 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \chi_{31} \\ \chi_{32} \\ \chi_{33} \end{pmatrix} = \vec{0} \qquad rref \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \vec{v}_{-1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix} \qquad \begin{array}{l} \textit{Eigenvalues: } \lambda_1 = 2, \lambda_2 = 1, \lambda_3 = -1 \\ \textit{with the corresponding Eigenvectors as} \end{array} \qquad \overrightarrow{v_2} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} \qquad \overrightarrow{v_1} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \qquad \overrightarrow{v}_{-1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

The matrix A is obviously diagonizable since it has three distinct eigenvalues. The corresponding S and D matrices are -

$$S = \begin{pmatrix} 1 & 3 & 1 \\ 3 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 2 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Its Eigenspace is spanned by the three vectors $\overrightarrow{v_2}$, $\overrightarrow{v_1}$, \overrightarrow{v}_{-1}

Consider
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Find its eigenvalues and eigenvectors, and diagonalize it if you can

Eigenvalues are $\lambda = 1$ (Algebraic Multiplicity 2) and $\lambda = 0$ (Algebraic Multiplicity 1)

For
$$\lambda = 1$$
, $\vec{X}_1 = ker(A - 1 * I) = ker \begin{pmatrix} 0 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \operatorname{span} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ Geometric Multiplicity = 1

For
$$\lambda = 0$$
, $\vec{X}_0 = ker(A - 0 * I) = ker \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \operatorname{span} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ Geometric Multiplicity = 1

Since \vec{X}_1 and \vec{X}_0 span only the \vec{X}_0 - \vec{X}_1 plane, we are unable to construct an eigenbasis for A. Hence A is not diagonizable.

Note also that for $\lambda = 1$, the Geometric Multiplicity is less than its Algebraic Multiplicity and, therefore, from that too, **A** is not diagonizable

Example
$$A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$

Find its eigenvalues and eigenvectors, and diagonalize it if you can

Characteristic Equation:
$$(1 - \lambda)(3 - \lambda) - 8 = 0$$

Eigenvalues are $\lambda = 5$ and $\lambda = -1$

For
$$\lambda = 5$$
, $\vec{X}_1 = ker(A - 5 * I) = ker\begin{pmatrix} -4 & 2 \\ 4 & -2 \end{pmatrix} = \operatorname{span}\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

For
$$\lambda = -1$$
, $\vec{X}_2 = ker(A+1*I) = ker\begin{pmatrix} 2 & 2 \\ 4 & 4 \end{pmatrix} = \operatorname{span}\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Since \vec{X}_1 and \vec{X}_2 form an eigenbasis for \vec{A} , \vec{A} is diagonizable with -

$$S = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 5 & 0 \\ 0 & -1 \end{pmatrix}$$

Example Consider
$$A = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$
 Find its eigenvalue eigenvectors, and diagonalize it if vo

Find its eigenvalues and diagonalize it if you can

Characteristic Equation simplifies to $\lambda(\lambda + 3)^2 = 0 \implies \lambda_1 = 0, \quad \lambda_2 = \lambda_3 = -3$

For
$$\lambda_1 = 0$$
 $A\overrightarrow{x_1} = \overrightarrow{0}$ $rref = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ $x_{11} = x_{13}$, $x_{12} = x_{13}$ $\overrightarrow{x_1} = k \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

For
$$\lambda_2 = \lambda_3 = -3$$
 $(A + 3I)\vec{x} = \vec{0}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}\vec{x} = \vec{0}$ $rref = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Figenvector for $\lambda_1 = 0$

So,
$$\vec{x} = \begin{pmatrix} -r - s \\ r \\ s \end{pmatrix} = r \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
 $\overrightarrow{x_2} = k \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ $\overrightarrow{x_3} = k \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

Eigenvectors for $\lambda_2 = \lambda_3 = 0$

$$A = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$

$$\lambda_1 = 0 \qquad \overrightarrow{x_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\lambda_2 = \lambda_3 = -3 \quad \begin{cases} \overrightarrow{x_2} = \begin{pmatrix} -1\\1\\0 \end{pmatrix} \\ \overrightarrow{x_3} = \begin{pmatrix} -1\\0\\1 \end{pmatrix} \end{cases}$$

To Diagonalize A -

$$S = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad S^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

$$D = S^{-1}AS \qquad D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$